|
|
A121574
|
|
Riordan array (1/(1-2*x), x*(1+x)/(1-2*x)).
|
|
2
|
|
|
1, 2, 1, 4, 5, 1, 8, 16, 8, 1, 16, 44, 37, 11, 1, 32, 112, 134, 67, 14, 1, 64, 272, 424, 305, 106, 17, 1, 128, 640, 1232, 1168, 584, 154, 20, 1, 256, 1472, 3376, 3992, 2641, 998, 211, 23, 1, 512, 3328, 8864, 12592, 10442, 5221, 1574, 277, 26, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Row sums are A006190(n+1); diagonal sums are A077939.
Inverse is A121575.
A generalized Delannoy number triangle.
Antidiagonal sums are A002478. - Philippe Deléham, Nov 10 2011.
|
|
LINKS
|
G. C. Greubel, Rows n = 0..100 of triangle, flattened
|
|
FORMULA
|
Number array T(n,k) = Sum_{j=0..n-k} C(k,j)*C(n-j,k)*2^(n-k-j).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k-1). - Philippe Deléham, Nov 10 2011
|
|
EXAMPLE
|
Triangle begins
1;
2, 1;
4, 5, 1;
8, 16, 8, 1;
16, 44, 37, 11, 1;
32, 112, 134, 67, 14, 1;
64, 272, 424, 305, 106, 17, 1;
|
|
MAPLE
|
T:=(n, k)->add(binomial(k, j)*binomial(n-j, k)*2^(n-k-j), j=0..n-k): seq(seq(T(n, k), k=0..n), n=0..9); # Muniru A Asiru, Nov 02 2018
|
|
MATHEMATICA
|
Table[Sum[Binomial[k, j] Binomial[n-j, k] 2^(n-k-j), {j, 0, n-k}], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 02 2018 *)
|
|
PROG
|
(PARI) for(n=0, 10, for(k=0, n, print1(sum(j=0, n-k, binomial(k, j)* binomial(n-j, k)*2^(n-k-j)), ", "))) \\ G. C. Greubel, Nov 02 2018
(MAGMA) [[(&+[ Binomial(k, j)*Binomial(n-j, k)*2^(n-k-j): j in [0..(n-k)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 02 2018
(GAP) T:=Flat(List([0..9], n->List([0..n], k->Sum([0..n-k], j->Binomial(k, j)*Binomial(n-j, k)*2^(n-k-j))))); # Muniru A Asiru, Nov 02 2018
|
|
CROSSREFS
|
Cf. Diagonals: A000012, A016789, A080855, A000079, A053220.
Sequence in context: A248670 A080935 A102661 * A117317 A124237 A123876
Adjacent sequences: A121571 A121572 A121573 * A121575 A121576 A121577
|
|
KEYWORD
|
easy,nonn,tabl
|
|
AUTHOR
|
Paul Barry, Aug 08 2006
|
|
STATUS
|
approved
|
|
|
|