|
|
A121570
|
|
Decimal expansion of cosecant of 36 degrees = csc(Pi/5) = 1/sin(Pi/5).
|
|
5
|
|
|
1, 7, 0, 1, 3, 0, 1, 6, 1, 6, 7, 0, 4, 0, 7, 9, 8, 6, 4, 3, 6, 3, 0, 8, 0, 9, 9, 4, 1, 2, 6, 0, 2, 2, 1, 4, 4, 4, 8, 0, 8, 0, 2, 8, 0, 7, 5, 2, 9, 6, 3, 3, 7, 6, 3, 6, 7, 3, 4, 8, 0, 4, 8, 4, 7, 5, 5, 7, 6, 8, 0, 9, 4, 7, 2, 7, 9, 1, 7, 9, 3, 3, 3, 8, 8, 6, 4, 0, 7, 2, 8, 5, 5, 7, 0, 3, 5, 2, 4, 2, 8, 7, 6, 8, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
1 + csc(Pi/5) is the radius of the smallest circle into which 5 unit circles can be packed ("r=2.701+ Proved by Graham in 1968.", according to the Friedman link, which has a diagram).
csc(Pi/5) = 1/A019845 is the distance between the center of the larger circle and the center of each unit circle.
The problem of finding the diameter d of the circumscribing circle of a regular pentagon of side s = 10 (in some length units) appears as an example in Abū Kāmil's treatise on the pentagon and decagon (see the Havil reference) and Abū Kāmil links. The answer is d/s = 1/sin(Pi/5). - Wolfdieter Lang, Mar 01 2018
Longer diagonal of golden rhombus with unit edge length. - Eric W. Weisstein, Dec 11 2018
|
|
REFERENCES
|
Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 58.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..10000
E. Friedman, Erich's Packing Center: "Circles in Circles"
I. C. Karpinski, The Algebra of Abu Kamil, Amer. Math. Month. XXI,2 (1914), 37-48.
MacTutor History of Mathematics, Abu Kamil Shuja.
Eric Weisstein's World of Mathematics, Golden Rhombus
Wikipedia, Abu Kamil.
|
|
FORMULA
|
Equals 1/A019845.
1/sin(Pi/5) = 2*(2*phi - 1)*sqrt(2 + phi)/5, with the golden ratio phi = A001622. - Wolfdieter Lang, Mar 01 2018
|
|
EXAMPLE
|
1.701301616704079864363080994126...
|
|
MAPLE
|
evalf(1/sin(Pi/5), 130); # Muniru A Asiru, Nov 02 2018
|
|
MATHEMATICA
|
RealDigits[Csc[Pi/5], 10, 100][[1]] (* G. C. Greubel, Nov 02 2018 *)
|
|
PROG
|
(PARI) 1/sin(Pi/5)
(MAGMA) SetDefaultRealField(RealField(100)); R:= RealField(); 1/Sin(Pi(R)/5); // G. C. Greubel, Nov 02 2018
(Sage) numerical_approx(1/sin(pi/5), digits=100) # G. C. Greubel, Dec 12 2018
|
|
CROSSREFS
|
Cf. A001622, A019845 (inverse), A182007 (2/A121570).
Cf. A179290 (shorter golden rhombus diagonal).
Sequence in context: A335947 A293530 A199603 * A169681 A202354 A324498
Adjacent sequences: A121567 A121568 A121569 * A121571 A121572 A121573
|
|
KEYWORD
|
cons,nonn
|
|
AUTHOR
|
Rick L. Shepherd, Aug 08 2006
|
|
STATUS
|
approved
|
|
|
|