login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121570 Decimal expansion of cosecant of 36 degrees = csc(Pi/5) = 1/sin(Pi/5). 5
1, 7, 0, 1, 3, 0, 1, 6, 1, 6, 7, 0, 4, 0, 7, 9, 8, 6, 4, 3, 6, 3, 0, 8, 0, 9, 9, 4, 1, 2, 6, 0, 2, 2, 1, 4, 4, 4, 8, 0, 8, 0, 2, 8, 0, 7, 5, 2, 9, 6, 3, 3, 7, 6, 3, 6, 7, 3, 4, 8, 0, 4, 8, 4, 7, 5, 5, 7, 6, 8, 0, 9, 4, 7, 2, 7, 9, 1, 7, 9, 3, 3, 3, 8, 8, 6, 4, 0, 7, 2, 8, 5, 5, 7, 0, 3, 5, 2, 4, 2, 8, 7, 6, 8, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

1 + csc(Pi/5) is the radius of the smallest circle into which 5 unit circles can be packed ("r=2.701+ Proved by Graham in 1968.", according to the Friedman link, which has a diagram).

csc(Pi/5) = 1/A019845 is the distance between the center of the larger circle and the center of each unit circle.

The problem of finding the diameter d of the circumscribing circle of a regular pentagon of side s = 10 (in some length units) appears as an example in Abū Kāmil's treatise on the pentagon and decagon (see the Havil reference) and Abū Kāmil links. The answer is d/s = 1/sin(Pi/5). - Wolfdieter Lang, Mar 01 2018

Longer diagonal of golden rhombus with unit edge length. - Eric W. Weisstein, Dec 11 2018

REFERENCES

Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 58.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

E. Friedman, Erich's Packing Center: "Circles in Circles"

I. C. Karpinski, The Algebra of Abu Kamil, Amer. Math. Month. XXI,2 (1914), 37-48.

MacTutor History of Mathematics, Abu Kamil Shuja.

Eric Weisstein's World of Mathematics, Golden Rhombus

Wikipedia, Abu Kamil.

FORMULA

1/sin(Pi/5) = 2*(2*phi - 1)*sqrt(2 + phi)/5, with the golden ratio phi = A001622. - Wolfdieter Lang, Mar 01 2018

EXAMPLE

1.701301616704079864363080994126...

MAPLE

evalf(1/sin(Pi/5), 130); # Muniru A Asiru, Nov 02 2018

MATHEMATICA

RealDigits[Csc[Pi/5], 10, 100][[1]] (* G. C. Greubel, Nov 02 2018 *)

PROG

(PARI) 1/sin(Pi/5)

(MAGMA) SetDefaultRealField(RealField(100)); R:= RealField(); 1/Sin(Pi(R)/5); // G. C. Greubel, Nov 02 2018

(Sage) numerical_approx(1/sin(pi/5), digits=100) # G. C. Greubel, Dec 12 2018

CROSSREFS

Cf. A001622, A019845 (1/A121570), A182007 (2/A121570).

Cf. A179290 (shorter golden rhombus diagonal).

Sequence in context: A061846 A293530 A199603 * A169681 A202354 A324498

Adjacent sequences:  A121567 A121568 A121569 * A121571 A121572 A121573

KEYWORD

cons,nonn

AUTHOR

Rick L. Shepherd, Aug 08 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 16:04 EST 2019. Contains 329371 sequences. (Running on oeis4.)