This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A121434 Matrix inverse of triangle A098568, where A098568(n, k) = C( (k+1)*(k+2)/2 + n-k-1, n-k) for n>=k>=0. 3
 1, 0, 1, 0, -1, 1, 0, 2, -3, 1, 0, -7, 12, -6, 1, 0, 37, -67, 39, -10, 1, 0, -268, 498, -311, 95, -15, 1, 0, 2496, -4701, 3045, -1015, 195, -21, 1, 0, -28612, 54298, -35901, 12560, -2675, 357, -28, 1, 0, 391189, -745734, 499157, -179717, 40635, -6097, 602, -36, 1, 0, -6230646, 11911221, -8034267, 2945010 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 LINKS FORMULA (1) T(n,k) = (-1)^(n-k)*[A107876^(k*(k+1)/2)](n,k); i.e., column k equals signed column k of A107876^(k*(k+1)/2). G.f.s for column k: (2) 1 = Sum_{j>=0} T(j+k,k)*x^j/(1-x)^( j*(j+1)/2) + j*k + k*(k+1)/2); (3) 1 = Sum_{j>=0} T(j+k,k)*x^j*(1+x)^( j*(j-1)/2) + j*k + k*(k+1)/2). EXAMPLE Triangle begins: 1; 0, 1; 0, -1, 1; 0, 2, -3, 1; 0, -7, 12, -6, 1; 0, 37, -67, 39, -10, 1; 0, -268, 498, -311, 95, -15, 1; 0, 2496, -4701, 3045, -1015, 195, -21, 1; 0, -28612, 54298, -35901, 12560, -2675, 357, -28, 1; 0, 391189, -745734, 499157, -179717, 40635, -6097, 602, -36, 1; ... PROG (PARI) /* Matrix Inverse of A098568 */ T(n, k)=local(M=matrix(n+1, n+1, r, c, if(r>=c, binomial((c-1)*(c-2)/2+r-2, r-c)))); return((M^-1)[n+1, k+1]) (PARI) /* Obtain by G.F. */ T(n, k)=polcoeff(1-sum(j=0, n-k-1, T(j+k, k)*x^j/(1-x+x*O(x^n))^(j*(j+1)/2+j*k+k*(k+1)/2)), n-k) CROSSREFS Cf. A098568, A107876; unsigned columns: A107877, A107887. Sequence in context: A264433 A048994 A132393 * A296455 A137329 A265604 Adjacent sequences:  A121431 A121432 A121433 * A121435 A121436 A121437 KEYWORD sign,tabl AUTHOR Paul D. Hanna, Aug 27 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 17 02:33 EST 2019. Contains 320200 sequences. (Running on oeis4.)