login
A121361
Expansion of f(x^1, x^5) * psi(x^2) in powers of x where psi(), f() are Ramanujan theta functions.
19
1, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 2, 2, 1, 1, 0, 1, 0, 1, 2, 0, 1, 1, 0, 2, 0, 2, 1, 0, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 0, 0, 1, 1, 1, 1, 0, 0, 2, 1, 2, 0, 1, 1, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 0, 0, 1, 0, 1, 0, 0, 2, 1, 1, 1, 1, 1, 2, 0, 1, 0, 2, 2, 1, 3, 0, 0, 0, 1, 0, 0
OFFSET
0,8
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-7/12) * eta(q^2) * eta(q^3) * eta(q^4) * eta(q^12) /
(eta(q) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 1, 0, 0, -1, 1, 0, 1, -1, 0, 0, 1, -2, ...].
2*a(n) = A093829(12*n + 7).
EXAMPLE
G.f. = 1 + x + x^2 + x^3 + x^5 + x^6 + 2*x^7 + x^8 + x^10 + x^11 + ...
G.f. = q^7 + q^19 + q^31 + q^43 + q^67 + q^79 + 2*q^91 + q^103 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x^1, x^6] QPochhammer[ -x^5, x^6] QPochhammer[ x^6] EllipticTheta[ 2, 0, x] / (2 x^(1/4)), {x, 0, n}]; (* Michael Somos, Sep 02 2014 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^6 + A)), n))};
CROSSREFS
Cf. A093829.
Sequence in context: A127499 A198068 A358194 * A191907 A052343 A073484
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 16 2006
STATUS
approved