login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121355 Number of transitive PSL_2(ZZ) actions on a finite labeled set of size n. 5
1, 1, 8, 48, 120, 2640, 30240, 201600, 4838400, 96163200, 1037836800, 30496435200, 828193766400, 13686991718400, 450537408921600, 15880397524992000, 356398802952192000, 13410127414075392000, 569542360114151424000, 16614774394239909888000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Equivalently, the number of different connected labeled trivalent diagrams of size n.

Also the number of (r,s) pair of permutations in S_n, which generate a transitive action and for which r is involutive i.e. r^2 = id and s is of weak order three i.e. s^3 = id.

LINKS

Table of n, a(n) for n=1..20.

S. A. Vidal, Sur la Classification et le Denombrement des Sous-groupes du Groupe Modulaire et de leurs Classes de Conjugaison, (in French), arXiv:math/0702223 [math.CO] 2006.

FORMULA

If A(z) = g.f. of a(n) and B(z) = g.f. of A121357 then A(z) = log(B(z)).

MAPLE

N := 100 : exs2:=sort(convert(taylor(exp(t+t^2/2), t, N+1), polynom), t, ascending) : exs3:=sort(convert(taylor(exp(t+t^3/3), t, N+1), polynom), t, ascending) : exs23:=sort(add(op(n+1, exs2)*op(n+1, exs3)/(t^n/ n!), n=0..N), t, ascending) : logexs23:=sort(convert(taylor(log(exs23), t, N+1), polynom), t, ascending) : sort(add(op(n, logexs23)*n!, n=1..N), t, ascending);

# Alternatively:

A121355_list := proc(len) local s, p; s := f -> seq(n!*coeff(series(f, z, n+1), z, n), n=0..len); p := m -> s(exp(z+z^m/m)); s(log(add((p(2)[n+1]*p(3)[n+1])*z^n/n!, n=0..len))) end: # Peter Luschny, Nov 16 2015

MATHEMATICA

m = 19; exs2 = Series[Exp[t + t^2/2], {t, 0, m + 1}] // Normal; exs3 = Series[Exp[t + t^3/3], {t, 0, m + 1}] // Normal; exs23 = Sum[exs2[[n + 1]]*exs3[[n + 1]]/(t^n/n!), {n, 0, m}]; logexs23 = Series[Log[exs23], {t, 0, m}] // Normal; CoefficientList[logexs23, t]*Range[0, m]! // Rest (* Jean-Fran├žois Alcover, Sep 06 2013, translated and adapted from Samuel Vidal's Maple program *)

PROG

(PARI) N=20; x='x+O('x^(N+1));

A121357_ser = serconvol(serlaplace(exp(x+x^2/2)), serlaplace(exp(x+x^3/3)));

Vec(serlaplace(log(serconvol(A121357_ser, exp(x))))) \\ Gheorghe Coserea, May 10 2017

CROSSREFS

Connected version of A121357.

Labeled version of A121350.

Cf. also A005133, A121352, A121356.

Sequence in context: A250257 A067239 A152750 * A227499 A168012 A222816

Adjacent sequences:  A121352 A121353 A121354 * A121356 A121357 A121358

KEYWORD

nonn

AUTHOR

Samuel A. Vidal, Jul 23 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 01:32 EST 2018. Contains 317118 sequences. (Running on oeis4.)