This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A121353 a(n) = (3*n - 2)*a(n-1) - a(n-2) starting a(0)=0, a(1)=1. 4
 0, 1, 4, 27, 266, 3431, 54630, 1034539, 22705228, 566596161, 15841987280, 490535009519, 16662348336366, 616016353436023, 24623991789104554, 1058215630578059799, 48653295014801646200, 2382953240094702604001, 123864915189909733761852, 6810187382204940654297859 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS In the hypergeometric family a(n) = (a0*n+c0)*a(n-1)+b0*a(n-2) we have A053984, A058797, A121323, A121351, and this here with a0=3, where a(n) can be expressed in a characteristic cross-product of Bessel functions. LINKS S. Janson, A divergent generating function that can be summed and analysed analytically, Discrete Mathematics and Theoretical Computer Science; 2010, Vol. 12, No. 2, 1-22. FORMULA 3*a(n)= Pi * BesselJ(1/3+n,2/3) * BesselY(1/3,2/3) - Pi*BesselJ(1/3,2/3) )*  BesselY(1/3+n,2/3). a(n) = sum {k = 0..floor((n-1)/2)} (-1)^k*3^(n-2*k-1)*(n-2*k-1)!*binomial(n-k-1,k)*binomial(n-k-2/3,k+1/3), cf. A058798. - Peter Bala, Aug 01 2013 a(n) ~ n! * BesselJ(1/3, 2/3) * 3^(n-2/3) * n^(-2/3). - Vaclav Kotesovec, Jul 31 2014 a(n) = 3^n*Gamma(n+1/3)*hypergeometric([1/2-n/2, 1-n/2], [4/3, 2/3-n, 1-n], -4/9)/Gamma(1/3) for n >= 2. - Peter Luschny, Sep 10 2014 MATHEMATICA f[n_Integer] = Module[{a}, a[n] /. RSolve[{a[n] == (3*n - 2)*a[n - 1] - a[n - 2], a[0] == 0, a[1] == 1}, a[n], n][[1]] // FullSimplify] Rationalize[N[Table[f[n], {n, 0, 25}], 100], 0] RecurrenceTable[{a[0]==0, a[1]==1, a[n]==(3n-2)*a[n-1]-a[n-2]}, a, {n, 20}]  (* Vaclav Kotesovec, Jul 31 2014 *) PROG (Sage) def A121353(n):     if n < 2: return n     return 3^n*gamma(n+1/3)*hypergeometric([1/2-n/2, 1-n/2], [4/3, 2/3 -n, 1-n], -4/9)/gamma(1/3) [round(A121353(n).n(100)) for n in (0..19)] # Peter Luschny, Sep 10 2014 CROSSREFS Cf. A053984, A058798, A121351, A121323. Sequence in context: A177379 A052813 A218653 * A265270 A161633 A052871 Adjacent sequences:  A121350 A121351 A121352 * A121354 A121355 A121356 KEYWORD nonn,easy AUTHOR Roger L. Bagula and Bob Hanlon (hanlonr(AT)cox.net), Sep 05 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 18 18:54 EST 2018. Contains 318243 sequences. (Running on oeis4.)