OFFSET
6,2
COMMENTS
Equivalently, the number of connected graphs on n unlabeled nodes with exactly 2 cycles of equal length without any shared node and all nodes having degree at most 4. - Andrew Howroyd, May 25 2018
LINKS
Andrew Howroyd, Table of n, a(n) for n = 6..200
Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991).
PROG
(PARI) \\ here G is A000598 as series
G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
C1(n)={sum(k=1, n\4, d1^(4*k) + 2*d1^(2*k)*d2^k + d2^(2*k))*(1 + d1^2)/(8*(1-d1))}
C2(n)={sum(k=1, n\4, 2*(d2^(2*k) + d4^k)*(1 + d2))*(1+d1)/(8*(1-d2))}
seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p, e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s, 1)^2*substvec(C1(n-2), [d1, d2], [g(d, 1), g(d, 2)]) + g(s, 2)*substvec(C2(n-2), [d1, d2, d4], [g(d, 1), g(d, 2), g(d, 4)]))} \\ Andrew Howroyd, May 25 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Parthasarathy Nambi, Aug 13 2006
EXTENSIONS
More terms from N. J. A. Sloane, Aug 27 2006
Terms a(26) and beyond from Andrew Howroyd, May 25 2018
STATUS
approved