login
A121124
Unbranched a-4-catapolynonagons (see Brunvoll reference for precise definition).
1
1, 4, 21, 138, 864, 5526, 34992, 221724, 1399680, 8818632, 55427328, 347684400, 2176782336, 13604912928, 84894511104, 528958247616, 3291294892032, 20453047668864, 126949945835520, 787089669219072, 4874877920083968, 30163307160752640, 186464080443211776, 1151689908801235968
OFFSET
2,2
LINKS
J. Brunvoll, S. J. Cyvin and B. N. Cyvin, Isomer enumeration of polygonal systems..., J. Molec. Struct. (Theochem), 364 (1996), 1-13, Table 12, q=9, alpha=1.
FORMULA
From R. J. Mathar, Aug 01 2019: (Start)
G.f.: x^2 +4*x^3 -3*x^4*(7-38*x-54*x^2+270*x^3) / ( (6*x^2-1)*(-1+6*x)^2 ).
a(n) = A000400((n-1)/2)/12 +6^(n-1)/16 +A053469(n+1)/864, where Axxxxx(.) is zero for fractional indices, n>3. (End)
MAPLE
# Exhibit 1
Hra := proc(r::integer, a::integer, q::integer)
binomial(r-1, a-1)*(q-3)+binomial(r-1, a) ;
%*(q-3)^(r-a-1) ;
end proc:
Jra := proc(r::integer, a::integer, q::integer)
binomial(r-2, a-2)*(q-3)^2 +2*binomial(r-2, a-1)*(q-3) +binomial(r-2, a) ;
%*(q-3)^(r-a-2) ;
end proc:
# Exhibit 2
A121124 := proc(r::integer)
q := 9 ;
a := 1 ;
Jra(r, a, q)+binomial(2, r-a)+( 1 +(-1)^(r+a) +(1+(-1)^a)*(1-(-1)^r)*floor((q-3)/2)/2)*Hra(floor(r/2), floor(a/2), q) ;
%/4 ;
end proc:
seq(A121124(n), n=2..30) # R. J. Mathar, Aug 01 2019
MATHEMATICA
Join[{1, 4}, LinearRecurrence[{12, -30, -72, 216}, {21, 138, 864, 5526}, 22]] (* Jean-François Alcover, Apr 04 2020 *)
CROSSREFS
Sequence in context: A288268 A265952 A369784 * A180399 A349534 A222058
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Aug 13 2006
STATUS
approved