login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121114 Edge-rooted tree-like octagonal systems (see the Cyvin et al. reference for precise definition). 5
0, 0, 0, 1, 15, 168, 1703, 16539, 157416, 1483900, 13928238, 130547475, 1223803350, 11484513612, 107940809223, 1016351200410, 9588249961074, 90633332095992, 858386837556696, 8145257860480545, 77432954101974513, 737419153249761752, 7034562802431438771, 67214038308803342715 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

From Petros Hadjicostas, Jul 30 2019: (Start)

Quoting from p. 59 in Cyvin et al. (1997): "When an octagon is rooted at an edge ... then either (a) one branch can be attached in five directions at a time, (b) two branches can be attached in six ways, or (c) three branches in one way. Let the numbers of these kinds of systems be denoted by (a) U_r^*, (b) U_r^{**}, and (c) U_r^{***}, respectively."

Here r is "the number of octagons or eight-membered rings" in an edge-rooted catapolygon (here, catapolyoctagon). A catapolyoctagon is a "catacondensed polygonal system consisting of octagons" (where "catacondensed" means it has no internal vertices).

On p. 59 in Cyvin et al. (1997), the total number of edge-rooted catapolyoctagons (each with r octagons) is denoted by U_r, and we have U_r = U_r^* + U_r^{**} + U_r^{***} for r >= 2.

We have U_r = A036758(r), U_r^* = A121112(r), U_r^{**} = A121113(r), and U_r^{***} = a(r) (current sequence) for r >= 1.

For the current sequence, we have a(r) = U_r^{***} = Sum_{i = 1..r-3} U(i) * Sum_{j = 1..r-i-2} U(j) * U(r-1-i-j) for r >= 4, where U(r) = A036758(r), with a(1) = a(2) = a(3) = 0. See Eq. (13) on p. 59 in Cyvin et al. (1997).

The ultimate purpose of these calculations (in the paper by Cyvin et al. (1997)) is the calculation of I_r = A036760(r), which is the "number of nonisomorphic free (unrooted) catapolyoctagons when r is given." These catapolyoctagons "represent a class of polycyclic conjugated hydrocarbons, C_{6r+2} H_{4r+4}" (see p. 57 in Cyvin et al. (1997)).

The g.f.'s of the sequences U, U^*, U^{**}, and U^{***} appear also in Eqs. (2) and (3) on p. 194 in Brunvoll et al. (1997).

(End)

REFERENCES

S. J. Cyvin, B. N. Cyvin, and J. Brunvoll. Enumeration of tree-like octagonal systems: catapolyoctagons, ACH Models in Chem. 134 (1997), 55-70; see pp. 59-61.

LINKS

Table of n, a(n) for n=1..24.

J. Brunvoll, S. J. Cyvin, and B. N. Cyvin, Enumeration of tree-like octagonal systems, J. Math. Chem., 21 (1997), 193-196; see Eqs. (2) and (3) on p. 194.

FORMULA

a(r) = Sum_{i = 1..r-3} U(i) * Sum_{j = 1..r-i-2} U(j) * U(r-1-i-j) for r >= 4, where U(r) = A036758(r), with a(1) = a(2) = a(3) = 0. - Petros Hadjicostas, Jul 30 2019

MAPLE

# Modification of N. J. A. Sloane's Maple program from A036758:

Order := 30;

S := solve(series(G/(G^3 + 6*G^2 + 5*G + 1), G) = x, G);

series(S^3*x, x = 0, 30); # Petros Hadjicostas, Jul 30 2019

CROSSREFS

Cf. A036758, A036759, A036760, A121112, A121113.

Sequence in context: A016234 A160197 A055660 * A121116 A218928 A202663

Adjacent sequences:  A121111 A121112 A121113 * A121115 A121116 A121117

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Aug 13 2006

EXTENSIONS

More terms from Petros Hadjicostas, Jul 30 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 29 11:16 EST 2020. Contains 331337 sequences. (Running on oeis4.)