login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121080 a(n) = Sum_{i=0..n} C(n,i)^2*i!*4^i + (1-2^n)*2^(n-1)*n!. 2
1, 4, 37, 541, 10625, 258661, 7464625, 248318309, 9339986689, 391569431365, 18095180332721, 913513359466885, 50008961524486849, 2950209091316054309, 186558089772409191985, 12587159519294553302821, 902488447534988078746625, 68518909362619336345906309 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..363

Joël Gay, Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups, Doctoral Thesis, Discrete Mathematics [cs.DM], Université Paris-Saclay, 2018.

Z. Li, Z. Li and Y. Cao, Enumeration of symplectic and orthogonal injective partial transformations, Discrete Math., 306 (2006), 1781-1787.

MATHEMATICA

Array[Sum[Binomial[#, i]^2*i!*4^i, {i, 0, #}] + (1 - 2^#)*2^(# - 1)*#! &, 18, 0] (* Michael De Vlieger, Nov 28 2018 *)

PROG

(PARI) a(n) = (1-2^n)*2^(n-1)*n! + sum(i=0, n, binomial(n, i)^2*i!*4^i); \\ Michel Marcus, May 31 2018

CROSSREFS

Cf. A102773, A121079.

Sequence in context: A235135 A316877 A277638 * A001518 A185082 A259822

Adjacent sequences:  A121077 A121078 A121079 * A121081 A121082 A121083

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Aug 11 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 15:53 EST 2019. Contains 319195 sequences. (Running on oeis4.)