

A121062


Partition numbers mod 4.


0



1, 1, 2, 3, 1, 3, 3, 3, 2, 2, 2, 0, 1, 1, 3, 0, 3, 1, 1, 2, 3, 0, 2, 3, 3, 2, 0, 2, 2, 1, 0, 2, 1, 3, 2, 3, 1, 1, 3, 1, 2, 3, 2, 1, 3, 2, 2, 2, 1, 1, 2, 3, 1, 3, 3, 0, 3, 2, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 3, 1, 0, 1, 3, 1, 0, 0, 3, 3, 0, 2, 0, 3, 3, 1, 0, 1, 2, 1, 1, 1, 1, 3, 3, 1, 0, 3, 0, 2, 0, 3, 0, 2, 3, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

P_n==0: 11, 15, 21, 26, 30, 55, 58, 59, 62, 66, 70, 74, 75, 78, 80, 84, 94, 96, 98, 100, ...,.
P_n==1: 0, 1, 4, 12, 13, 17, 18, 29, 32, 36, 37, 39, 43, 48, 49, 52, 61, 67, 69, 71, 73, ...,.
P_n==2: 2, 8, 9, 10, 19, 22, 25, 27, 28, 31, 34, 40, 42, 45, 46, 47, 50, 57, 64, 65, 79, ...,.
P_n==3: 3, 5, 6, 7, 14, 16, 20, 23, 24, 33, 35, 38, 41, 44, 51, 53, 54, 56, 60, 63, 68, ...,.


LINKS

Table of n, a(n) for n=0..104.


FORMULA

a(n) = A000041(mod 4) = number of partitions of n (the partition numbers) modulo 4 = A010873(A000041(n)).


MATHEMATICA

f[n_] := Mod[PartitionsP@n, 4]; Table[f@n, {n, 0, 104}] (* Robert G. Wilson v *)


CROSSREFS

Cf. A000041, A010873, A049575.
Sequence in context: A080717 A239214 A200181 * A045831 A046821 A239691
Adjacent sequences: A121059 A121060 A121061 * A121063 A121064 A121065


KEYWORD

easy,nonn


AUTHOR

Jonathan Vos Post, Aug 10 2006


EXTENSIONS

More terms from Robert G. Wilson v, Aug 17 2006


STATUS

approved



