login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121053 A sequence S describing the position of its prime terms. 6
2, 3, 5, 1, 7, 8, 11, 13, 10, 17, 19, 14, 23, 29, 16, 31, 37, 20, 41, 43, 22, 47, 53, 25, 59, 27, 61, 30, 67, 71, 73, 33, 79, 35, 83, 38, 89, 97, 40, 101 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
S reads like this:
"At position 2, there is a prime in S" [indeed, this is 3]
"At position 3, there is a prime in S" [indeed, this is 5]
"At position 5, there is a prime in S" [indeed, this is 7]
"At position 1, there is a prime in S" [indeed, this is 2]
"At position 7, there is a prime in S" [indeed, this is 11]
"At position 8, there is a prime in S" [indeed, this is 13]
"At position 11, there is a prime in S" [indeed, this is 19]
"At position 13, there is a prime in S" [indeed, this is 23]
"At position 10, there is a prime in S" [indeed, this is 17], etc.
S is built with this rule: when you are about to write a term of S, always use the smallest integer not yet present in S and not leading to a contradiction.
Thus one cannot start with 1; this would read: "At position 1, there is a prime number in S" [no, 1 is not a prime]
So start S with 2 and the rest follows smoothly.
S contains all the primes and they appear in their natural order.
Does the ratio primes/composites in S tend to a limit? Answer (from Dean Hickerson): Yes, to 1/2.
Comments from Dean Hickerson, Aug 11 2006: (Start)
In the limit, exactly half of the terms are primes. Here's a formula, found empirically, for a(n) for n >= 5:
Let pi(n) be the number of primes <= n and p(n) be the n-th prime. Then:
- if n is prime or (n is composite and n+pi(n) is even) then a(n) = p(floor((n+pi(n))/2));
- if n is composite and n+pi(n) is odd and n+1 is composite then a(n) = n+1;
- if n is composite and n+pi(n) is odd and n+1 is prime then a(n) = n+2.
Also, for n >= 5, n is in the sequence iff either n is prime or n+pi(n) is even.
(This could all be proved by induction on n.)
It follows from this that, for n >= 4, the number of primes among a(1), ..., a(n) is exactly floor((n+pi(n))/2. Since pi(n)/n -> 0 as n -> infinity, this is asymptotic to n/2. (End)
LINKS
Eric Angelini, About this sequence
E. Angelini, A sequence describing the position of its prime terms [Cached, with permission]
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 9.
MATHEMATICA
a[1]=2; a[2]=3; a[3]=5; a[4]=1; a[n_ /; PrimeQ[n] || !PrimeQ[n] && EvenQ[n+PrimePi[n]]] := Prime[Floor[(n+PrimePi[n])/2]]; a[n_ /; !PrimeQ[n] && OddQ[n+PrimePi[n]]] := If[!PrimeQ[n+1], n+1, n+2]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 21 2011, after Dean Hickerson's empirical formula *)
CROSSREFS
Cf. A105753.
Sequence in context: A210945 A191795 A330612 * A203620 A249070 A249069
KEYWORD
nonn,nice
AUTHOR
Eric Angelini, Aug 10 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 23:26 EDT 2024. Contains 371917 sequences. (Running on oeis4.)