login
A121017
Stirling transform of A104600.
2
1, 1, 6, 65, 1125, 28132, 950649, 41475961, 2259756900, 149874308367, 11858161118925, 1101069785060610, 118366544943589215, 14564702419742606497, 2031425158227034739646, 318472106732688712103885, 55708816671530680003669185, 10803156636116962310987233404
OFFSET
0,3
LINKS
FORMULA
a(n) = (1/(2e)) * Sum_{r,s >= 0} (r*s)^n / (2^r*s!).
a(n) = A000670(n)*A000110(n). - Vladeta Jovovic, Sep 27 2006
MAPLE
a:= n-> combinat[bell](n)*add(Stirling2(n, k)*k!, k=0..n): seq(a(n), n=0..19); # Zerinvary Lajos, Sep 30 2006
MATHEMATICA
Table[BellB[n]*Sum[StirlingS2[n, k]*k!, {k, 0, n}], {n, 0, 17}] (* James C. McMahon, Oct 11 2024 *)
CROSSREFS
Row sums of A323099.
Sequence in context: A217899 A349524 A006959 * A239998 A278841 A327228
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Sep 08 2006
EXTENSIONS
More terms from Zerinvary Lajos, Sep 30 2006
STATUS
approved