login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120957
Sequence uniquely defined by: n*a(n) = (n-1)*[x^n] B(x) for n>1 with a(0)=a(1)=1, or, equivalently, x*A'(x) = 1+x - B(x) + x*B'(x), where B(x) = series_reversion(x/A(x))/x.
1
1, 1, 1, 8, 123, 3024, 106850, 5110440, 317955435, 24986363648, 2422868732514, 284385893015080, 39758967921029830, 6530586385172586528, 1245479442254732687652, 272988926352496428778928
OFFSET
0,4
COMMENTS
a(n) is divisible by (n-1) for n>1.
FORMULA
The g.f. of A120958 equals B(x) = series_reversion(x/A(x))/x, so that both A(x) = B(x/A(x)) and B(x) = A(x*B(x)) equivalently hold.
PROG
(PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[ #A]=(#A-2)*Vec(serreverse(x/Ser(A)))[ #A]); A[n+1]}
CROSSREFS
Sequence in context: A264408 A364985 A376099 * A302356 A367122 A069459
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 21 2006
STATUS
approved