login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A120879 G.f. satisfies: A(x) = A(x^3)*(1 + 3*x + 2*x^2). 0
1, 3, 2, 3, 9, 6, 2, 6, 4, 3, 9, 6, 9, 27, 18, 6, 18, 12, 2, 6, 4, 6, 18, 12, 4, 12, 8, 3, 9, 6, 9, 27, 18, 6, 18, 12, 9, 27, 18, 27, 81, 54, 18, 54, 36, 6, 18, 12, 18, 54, 36, 12, 36, 24, 2, 6, 4, 6, 18, 12, 4, 12, 8, 6, 18, 12, 18, 54, 36, 12, 36, 24, 4, 12, 8, 12, 36, 24, 8, 24, 16, 3, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = 3^A062756(n) * 2^A081603(n), where A062756(n) is the number of 1's and A081603(n) is the number of 2's, in the ternary expansion of n.

More general, if g.f. of {a(n)} satisfies: A(x) = A(x^d)*(1+Sum_{k=1..d-1} c(k)*x^k), then a(n) = prod_{k=1..d-1} c(k)^digits(n,k,d), where digits(n,k,d) is the number of k's in the d-ary expansion of n and d is any integer > 1. This sequence is a simple example for d=3 with c(1)=3 and c(2)=2.

LINKS

Table of n, a(n) for n=0..82.

FORMULA

G.f.: A(x) = prod_{n>=0} (1 + x^(3^n))*(1 + 2*x^(3^n)).

a(n) = a(floor(n/3)) * 3^((n Mod 3) Mod2) * 2^floor((n Mod 3)/2) with a(0)=1.

PROG

(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, floor(log(n+1)/log(3))+1, A=subst(A, x, x^3+x*O(x^n))*(1+3*x+2*x^2)); polcoeff(A, n, x)}

(PARI) /* Recurrence: */ {a(n)=if(n==0, 1, a(n\3)*3^((n%3)%2)*2^((n%3)\2))}

CROSSREFS

Cf. A120880, A062756, A081603.

Sequence in context: A216829 A022460 A010605 * A118064 A292024 A290093

Adjacent sequences:  A120876 A120877 A120878 * A120880 A120881 A120882

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 11 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 13:33 EST 2017. Contains 295876 sequences.