login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A120806 Positive integers n such that n+d+1 is prime for all divisors d of n. 9
1, 3, 5, 9, 11, 29, 35, 39, 41, 65, 125, 179, 191, 239, 281, 419, 431, 641, 659, 749, 755, 809, 905, 935, 989, 1019, 1031, 1049, 1229, 1289, 1451, 1469, 1481, 1829, 1859, 1931, 2129, 2141, 2339, 2519, 2549, 2969, 3161, 3299, 3329, 3359, 3389, 3539, 3821, 3851 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

No a(n) can be even, since a(n)+2 must be prime. If a(n) is a prime, then it is a Sophie Germain twin prime (A045536). The only square is 9. Let the degree of n be the sum of the exponents in its prime factorization. By convention, degree(1)=0. Then every a(n) has degree less than or equal to 3. Let the weight of n be the number of its distinct prime factors. By convention, weight(1)=0. Clearly, w<=d is always true, with d=w only when the number is squarefree. Let [w,d] be the set of all integers with weight w and degree d. Then only the following possibilities occur: 1. [0,0] => a(1)=1. 2. [1,1] => Sophie Germain twin prime: 3, 5, 11, 29, A005384, A045536. 3. [1,2] => a(4)=9 is the only occurrence. 4. [1,3] => 5^3, 71^3 and 303839^3 are the first few cubes, A000578, A120808. 5. [2,2] => 5*7, 3*13 and 5*13 are the first few semiprimes, A001358, A120807. 6. [2,3] => 11*13^2, 61^2*89 and 13^2*12671 are the first few examples, A014612, A054753, A120809. 7. [3,3] => 5*11*17, 5*53*1151, 5*11*42533 are the first few 3-almost primes, A007304, A120810.

LINKS

T. D. Noe, Table of n, a(n) for n=1..1000

FORMULA

a(n) = n-th number such that n+d+1 is prime for all divisors d of n.

EXAMPLE

a(11)=125 since divisors(125)={1,5,25,125} and the set of all n+d+1 is {127,131,151,251} and these are all prime.

MAPLE

with(numtheory); L:=[1]: for w to 1 do for k from 1 to 12^6 while nops(L)<=1000 do x:=2*k+1; if andmap(isprime, [x+2, 2*x+1]) then S:=divisors(x) minus {1, x}; Q:=map(z-> x+z+1, S); if andmap(isprime, Q) then L:=[op(L), x]; print(nops(L), ifactor(x)); fi; fi; od od; L;

CROSSREFS

Cf. A000578, A001358, A005384, A007304, A014612, A054753, A120776, A120807, A120808, A120809, A120810.

Sequence in context: A092917 A163778 A160358 * A020946 A091785 A191403

Adjacent sequences:  A120803 A120804 A120805 * A120807 A120808 A120809

KEYWORD

nonn

AUTHOR

Walter Kehowski, Jul 06 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 07:52 EST 2014. Contains 250285 sequences.