login
A120771
Expansion of ( 1-x^3+x^4+x^5-x^8 ) / ( 1-2*x^3-x^6+x^9 ).
0
1, 0, 0, 1, 1, 1, 3, 2, 1, 6, 5, 3, 14, 11, 6, 31, 25, 14, 70, 56, 31, 157, 126, 70, 353, 283, 157, 793, 636, 353, 1782, 1429, 793, 4004, 3211, 1782, 8997, 7215, 4004, 20216, 16212, 8997, 45425, 36428, 20216, 102069, 81853, 45425, 229347, 183922, 102069, 515338, 413269, 229347, 1157954, 928607, 515338
OFFSET
0,7
FORMULA
Three consecutive coefficients are generated from the left row of the n-th power of the matrix [1,1,1; 1,1,0; 1,0,0].
MATHEMATICA
CoefficientList[Series[(1-x^3+x^4+x^5-x^8)/(1-2*x^3-x^6+x^9), {x, 0, 60}], x] (* or *) LinearRecurrence[{0, 0, 2, 0, 0, 1, 0, 0, -1}, {1, 0, 0, 1, 1, 1, 3, 2, 1}, 60] (* Harvey P. Dale, Feb 19 2016 *)
CROSSREFS
Cf. A077998 (trisection), A006054 (trisection), A006356 (trisection), A038196.
Sequence in context: A208152 A194761 A129674 * A115094 A165958 A113655
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jul 03 2006
STATUS
approved