login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A120733 Number of matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n. 9
1, 1, 5, 33, 281, 2961, 37277, 546193, 9132865, 171634161, 3581539973, 82171451025, 2055919433081, 55710251353953, 1625385528173693, 50800411296363617, 1693351638586070209, 59966271207156833313, 2248276994650395873861, 88969158875611127548481 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The number of such matrices up to rows/columns permutations are given in A007716.

Dimensions of the graded components of the Hopf algebra MQSym (Matrix quasi-symmetric functions). - Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Oct 23 2006

From Kyle Petersen, Aug 10 2016: (Start)

Number of cells in the two-sided Coxeter complex of the symmetric group. Inclusion of faces corresponds to refinement of matrices, see Section 6 of Petersen paper. The number of cells in the type B analog is given by A275787.

Also known as "two-way contingency tables" in the Diaconis-Gangolli reference. (End)

REFERENCES

Sara C. Billey, M Konvalinka, TK Petersen, W Slofstra, B. E. Tenner, Parabolic double cosets in Coxeter groups, Discrete Mathematics and Theoretical Computer Science, Submitted, 2016; http://www.math.washington.edu/~billey/papers/DoubleCosets.pdf

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..400

P. Diaconis and A. Gangolli, Rectangular arrays with fixed margins, Discrete probability and algorithms (Minneapolis, MN, 1993), 15-41, IMA Vol. Math. Appl., 72, Springer, New York, 1995.

G. Duchamp, F. Hivert and J.-Y. Thibon, Noncommutative symmetric functions VI: Free quasi-symmetric functions and related algebras, Internat. J. Alg. Comp. 12 (2002), 671-717

Vaclav Kotesovec, Asymptotics of the sequence A120733

E. Munarini, M. Poneti, S. Rimaldi, Matrix compositions, JIS 12 (2009) 09.4.8, Remark 30.

T. K. Petersen, A two-sided analogue of the Coxeter complex, arXiv:1607.00086 [math.CO], (2016).

FORMULA

a(n) = (1/n!)*Sum_{k=0..n} (-1)^(n-k)*Stirling1(n,k)*A000670(k)^2.

G.f.: Sum_{m>=0,n>=0} Sum_{j=0..n} (-1)^(n-j)*C(n,j)*((1-x)^(-j)-1)^m.

a(n) = Sum_{r>=0,s>=0} binomial(r*s+n-1,n)/2^(r+s+2).

G.f.: Sum_{n>=0} 1/(2-(1-x)^(-n))/2^(n+1). - Vladeta Jovovic, Oct 30 2006

a(n) ~ 2^(log(2)/2-2) * n! / (log(2))^(2*n+2). - Vaclav Kotesovec, May 07 2014

EXAMPLE

a(2) = 5:

[1 0]   [0 1]   [1]   [1 1]   [2]

[0 1]   [1 0]   [1]

MAPLE

t1 := M -> add( add( add( (-1)^(n-j)*binomial(n, j)*((1-x)^(-j)-1)^m, j=0..n), n=0..M), m=0..M); s := series(t1(20), x, 20); gfun[seriestolist](%); # N. J. A. Sloane, Jan 14 2009

MATHEMATICA

a[n_] := Sum[2^(-2-r-s)*Binomial[n+r*s-1, n], {r, 0, Infinity}, {s, 0, Infinity}]; Table[Print[an = a[n]]; an, {n, 0, 19}] (* Jean-Fran├žois Alcover, May 15 2012, after Vladeta Jovovic *)

Flatten[{1, Table[1/n!*Sum[(-1)^(n-k)*StirlingS1[n, k]*Sum[m!*StirlingS2[k, m], {m, 1, k}]^2, {k, 1, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, May 07 2014 *)

CROSSREFS

Cf. A007322 (partial sums), A007716, A101370, A120732, A261838.

Row sums of A261781.

Sequence in context: A049377 A129890 A316158 * A218496 A144792 A291846

Adjacent sequences:  A120730 A120731 A120732 * A120734 A120735 A120736

KEYWORD

nonn

AUTHOR

Vladeta Jovovic, Aug 18 2006, Aug 21 2006

EXTENSIONS

More terms from N. J. A. Sloane, Jan 14 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 22:27 EDT 2018. Contains 315360 sequences. (Running on oeis4.)