

A120720


Even square as prime gaps to produce a set of triangular primes.


0



7, 19, 41, 11, 23, 43, 71, 47, 17, 29, 113, 157, 53, 23, 83, 163, 59, 167, 347, 173, 353, 47, 67, 131, 227, 431
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

23 seems to be made two different ways here.


LINKS

Table of n, a(n) for n=1..26.


FORMULA

a(n,m) = If[ PrimeQ[(2*n)^2 + Prime[m]], (2*n)^2 + Prime[m]]


EXAMPLE

7, 19
41
11, 23, 43, 71
47
17, 29, 113, 157
53
23, 83, 163
59, 167, 347
173, 353
47, 67, 131, 227, 431


MATHEMATICA

t[n_, m_] := If[ PrimeQ[(2*n)^2 + Prime[m]], (2*n)^2 + Prime[m], {}] a = Table[Flatten[Table[t[n, m], {n, 1, m}]], {m, 2, 11}] Flatten[a]


CROSSREFS

Sequence in context: A303855 A295077 A239359 * A098422 A191066 A087762
Adjacent sequences: A120717 A120718 A120719 * A120721 A120722 A120723


KEYWORD

nonn


AUTHOR

Roger L. Bagula, Aug 15 2006


STATUS

approved



