|
|
A120698
|
|
Restricted growth functions for set partitions.
|
|
5
|
|
|
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 3, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 3, 1, 2, 3, 1, 1, 2, 3, 2, 1, 2, 3, 3, 1, 2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
Table starts:
1
1,1
1,2
1,1,1
1,1,2
1,2,1
1,2,2
1,2,3
There are restricted growth functions (RGF, sometime called restricted growth strings, RGS) for various kinds of combinatorial objects. For the RGF used here see figure 17.1-D on p.358 of the Fxtbook, see links.
|
|
LINKS
|
Alois P. Heinz, Rows n = 1..5295, flattened
Joerg Arndt, Matters Computational (The Fxtbook)
|
|
MATHEMATICA
|
Flatten[Table[RGFs[n], {n, 1, 5}]](* Geoffrey Critzer, Dec 08 2010 *)
|
|
CROSSREFS
|
Cf. A000110, A120699 (row lengths).
Sequence in context: A303837 A286520 A320105 * A338411 A326775 A317240
Adjacent sequences: A120695 A120696 A120697 * A120699 A120700 A120701
|
|
KEYWORD
|
nonn,tabf
|
|
AUTHOR
|
Franklin T. Adams-Watters, Jun 28 2006
|
|
STATUS
|
approved
|
|
|
|