This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A120698 Restricted growth functions for set partitions. 5
 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 3, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 3, 1, 2, 3, 1, 1, 2, 3, 2, 1, 2, 3, 3, 1, 2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Table starts: 1 1,1 1,2 1,1,1 1,1,2 1,2,1 1,2,2 1,2,3 There are restricted growth functions (RGF, sometime called restricted growth strings, RGS) for various kinds of combinatorial objects.  For the RGF used here see figure 17.1-D on p.358 of the Fxtbook, see links. LINKS Alois P. Heinz, Rows n = 1..5295, flattened Joerg Arndt, Matters Computational (The Fxtbook) MATHEMATICA Flatten[Table[RGFs[n], {n, 1, 5}]](* Geoffrey Critzer, Dec 08 2010 *) CROSSREFS Cf. A000110, A120699 (row lengths). Sequence in context: A030612 A264857 A286520 * A184170 A025919 A095684 Adjacent sequences:  A120695 A120696 A120697 * A120699 A120700 A120701 KEYWORD nonn,tabf AUTHOR Franklin T. Adams-Watters, Jun 28 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.