The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A120691 First differences of coefficients in the continued fraction for e. 3
 2, -1, 1, -1, 0, 3, -3, 0, 5, -5, 0, 7, -7, 0, 9, -9, 0, 11, -11, 0, 13, -13, 0, 15, -15, 0, 17, -17, 0, 19, -19, 0, 21, -21, 0, 23, -23, 0, 25, -25, 0, 27, -27, 0, 29, -29, 0, 31, -31, 0, 33, -33, 0, 35, -35, 0, 37, -37, 0, 39, -39 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS First differences of A003417. LINKS Index entries for linear recurrences with constant coefficients, signature (-1,-1,1,1,1). FORMULA G.f.: (1-x)(2+x+2x^2-3x^3-x^4+x^6)/(1-2x^3+x^6); a(n)=2*C(0,n)-C(1,n)+2*sin(2*pi*(n-1)/3)*floor((2n-1)/3)/sqrt(3). [Sign corrected by M. F. Hasler, May 01 2013] a(0)=2, a(1)=-1, for n>0: a(3n-1)=2n-1, a(3n)=1-2n, a(3n+1)=0. - M. F. Hasler, May 01 2013 MATHEMATICA Join[{2}, Differences[ContinuedFraction[E, 120]]] (* or *) LinearRecurrence[ {-1, -1, 1, 1, 1}, {2, -1, 1, -1, 0, 3, -3}, 120] (* Harvey P. Dale, Jun 08 2016 *) PROG (PARI) A120691(n)={n<2 && return(2-3*n); n=divrem(n-1, 3); if(n[2], -(1+n[1]*2)*(-1)^n[2])} \\ - M. F. Hasler, May 01 2013 CROSSREFS Cf. A102899. Sequence in context: A182662 A308778 A127284 * A111941 A153462 A126310 Adjacent sequences:  A120688 A120689 A120690 * A120692 A120693 A120694 KEYWORD easy,sign AUTHOR Paul Barry, Jun 27 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 16:04 EDT 2021. Contains 343135 sequences. (Running on oeis4.)