login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A120691 First differences of coefficients in the continued fraction for e. 3
2, -1, 1, -1, 0, 3, -3, 0, 5, -5, 0, 7, -7, 0, 9, -9, 0, 11, -11, 0, 13, -13, 0, 15, -15, 0, 17, -17, 0, 19, -19, 0, 21, -21, 0, 23, -23, 0, 25, -25, 0, 27, -27, 0, 29, -29, 0, 31, -31, 0, 33, -33, 0, 35, -35, 0, 37, -37, 0, 39, -39 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

First differences of A003417.

LINKS

Table of n, a(n) for n=0..60.

Index entries for linear recurrences with constant coefficients, signature (-1,-1,1,1,1).

FORMULA

G.f.: (1-x)(2+x+2x^2-3x^3-x^4+x^6)/(1-2x^3+x^6);

a(n)=2*C(0,n)-C(1,n)+2*sin(2*pi*(n-1)/3)*floor((2n-1)/3)/sqrt(3). [Sign corrected by M. F. Hasler, May 01 2013]

a(0)=2, a(1)=-1, for n>0: a(3n-1)=2n-1, a(3n)=1-2n, a(3n+1)=0. - M. F. Hasler, May 01 2013

MATHEMATICA

Join[{2}, Differences[ContinuedFraction[E, 120]]] (* or *) LinearRecurrence[ {-1, -1, 1, 1, 1}, {2, -1, 1, -1, 0, 3, -3}, 120] (* Harvey P. Dale, Jun 08 2016 *)

PROG

(PARI) A120691(n)={n<2 && return(2-3*n); n=divrem(n-1, 3); if(n[2], -(1+n[1]*2)*(-1)^n[2])} \\ - M. F. Hasler, May 01 2013

CROSSREFS

Cf. A102899.

Sequence in context: A249303 A182662 A127284 * A111941 A153462 A126310

Adjacent sequences:  A120688 A120689 A120690 * A120692 A120693 A120694

KEYWORD

easy,sign

AUTHOR

Paul Barry, Jun 27 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 19:19 EST 2016. Contains 278770 sequences.