login
A120571
2n^4+6n^2+4 = 2(n^2+1)(n^2+2).
2
12, 60, 220, 612, 1404, 2812, 5100, 8580, 13612, 20604, 30012, 42340, 58140, 78012, 102604, 132612, 168780, 211900, 262812, 322404, 391612, 471420, 562860, 667012, 785004, 918012, 1067260, 1234020, 1419612, 1625404, 1852812, 2103300, 2378380
OFFSET
1,1
COMMENTS
Largest perimeter of any triangle with integer sides a<=b<=c and inradius n. Triangle has sides (n^2+2,n^4+2n^2+1,n^4+3n^2+1).
FORMULA
From Chai Wah Wu, Apr 15 2017: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 5.
G.f.: x*(-4*x^4 + 8*x^3 - 40*x^2 - 12)/(x - 1)^5. (End)
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {12, 60, 220, 612, 1404}, 40] (* Harvey P. Dale, Dec 28 2018 *)
PROG
(PARI) a(n)=2*(n^2+1)*(n^2+2) \\ Charles R Greathouse IV, Oct 21 2022
CROSSREFS
See A120062 for sequences related to integer-sided triangles with integer inradius n.
Sequence in context: A012288 A012582 A260356 * A086950 A370700 A374648
KEYWORD
nonn,easy
AUTHOR
David W. Wilson, Jun 17 2006
STATUS
approved