login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A120566 G.f. satisfies: A(x) = A(A(x)) - x*A(A(A(x))), with A(0)=0. 0
1, 1, 1, 3, 7, 33, 109, 643, 2623, 17929, 85349, 652395, 3517911, 29484193, 176844781, 1605009651, 10575269935, 103033059513, 738834271605, 7676696689275, 59466011617671, 655467253898577, 5451048833933693 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

If A(0, x) = x, A(n+1, x) = A( A(n, x)) = A(n, A(x)). Then A(n, x) = x + n*x^2 + n^2*x^3 + (n^3 + 2*n)*x^4 + (n^4 + 6*n^2)*x^5 + ... where [x^4] A(n, x) = A054602(n). - Michael Somos, Jan 22 2012

LINKS

Table of n, a(n) for n=1..23.

FORMULA

G.f. satisfies: A(-A(-x)) = x ; Also: A(x) = x + A(A(x))*series_reversion(A(x)).

Since g.f. satisfies: A(A(x)) = ( x - A(x) )/A(-x), then higher order self-compositions of A(x) reduce into expressions involving A(x) and A(-x). - Paul D. Hanna, Jul 22 2006

EXAMPLE

A(x) = x + x^2 + x^3 + 3x^4 + 7x^5 + 33x^6 + 109x^7 + 643x^8 +...

A(A(x)) = x + 2x^2 + 4x^3 + 12x^4 + 40x^5 + 168x^6 + 736x^7 + 3784x^8+..

x*A(A(A(x))) = x^2 + 3x^3 + 9x^4 + 33x^5 + 135x^6 + 627x^7 + 3141x^8+...

PROG

(PARI) {a(n)=local(A=x+x^2+x*O(x^n)); if(n<1, 0, for(i=1, n, A=x-subst(A, x, -x)*subst(A, x, A)); polcoeff(A, n))}

CROSSREFS

Sequence in context: A143967 A007646 A238314 * A057480 A051256 A057795

Adjacent sequences:  A120563 A120564 A120565 * A120567 A120568 A120569

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 14 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 21 19:43 EST 2014. Contains 252325 sequences.