login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A120566 G.f. satisfies: A(x) = A(A(x)) - x*A(A(A(x))), with A(0)=0. 0
1, 1, 1, 3, 7, 33, 109, 643, 2623, 17929, 85349, 652395, 3517911, 29484193, 176844781, 1605009651, 10575269935, 103033059513, 738834271605, 7676696689275, 59466011617671, 655467253898577, 5451048833933693 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

If A(0, x) = x, A(n+1, x) = A( A(n, x)) = A(n, A(x)). Then A(n, x) = x + n*x^2 + n^2*x^3 + (n^3 + 2*n)*x^4 + (n^4 + 6*n^2)*x^5 + ... where [x^4] A(n, x) = A054602(n). - Michael Somos, Jan 22 2012

LINKS

Table of n, a(n) for n=1..23.

FORMULA

G.f. satisfies: A(-A(-x)) = x ; Also: A(x) = x + A(A(x))*series_reversion(A(x)).

Since g.f. satisfies: A(A(x)) = ( x - A(x) )/A(-x), then higher order self-compositions of A(x) reduce into expressions involving A(x) and A(-x). - Paul D. Hanna, Jul 22 2006

EXAMPLE

A(x) = x + x^2 + x^3 + 3x^4 + 7x^5 + 33x^6 + 109x^7 + 643x^8 +...

A(A(x)) = x + 2x^2 + 4x^3 + 12x^4 + 40x^5 + 168x^6 + 736x^7 + 3784x^8+..

x*A(A(A(x))) = x^2 + 3x^3 + 9x^4 + 33x^5 + 135x^6 + 627x^7 + 3141x^8+...

PROG

(PARI) {a(n)=local(A=x+x^2+x*O(x^n)); if(n<1, 0, for(i=1, n, A=x-subst(A, x, -x)*subst(A, x, A)); polcoeff(A, n))}

CROSSREFS

Sequence in context: A143967 A007646 A238314 * A057480 A051256 A057795

Adjacent sequences:  A120563 A120564 A120565 * A120567 A120568 A120569

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 14 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 16:27 EST 2016. Contains 278946 sequences.