

A120525


First differences of successive generalized metaFibonacci numbers A120503.


2



1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..75.
C. Deugau and F. Ruskey, Complete kary Trees and Generalized MetaFibonacci Sequences, J. Integer Seq., Vol. 12. [This is a later version than that in the GenMetaFib.html link]
C. Deugau and F. Ruskey, Complete kary Trees and Generalized MetaFibonacci Sequences


FORMULA

d(n) = 0 if node n is an inner node, or 1 if node n is a leaf.
g.f.: z (1 + z^1 ( (1  z^(2 * [1])) / (1  z^[1]) + z^3 * (1  z^(3 * [i]))/(1  z^[1]) ( (1  z^(2 * [2])) / (1  z^[2]) + z^9 * (1  z^(3 * [2]))/(1  z^[2]) (..., where [i] = (3^i  1) / 2.
g.f.: D(z) = z * prod((1  z^(3 * [i])) / (1  z^[i])), i=1..infinity), where [i] = (3^i  1) / 2.


MAPLE

d := n > if n=1 then 1 else A120503(n)A120503(n1) fi;


CROSSREFS

Cf. A120503, A120514.
Sequence in context: A304653 A132350 A076213 * A285373 A112299 A230901
Adjacent sequences: A120522 A120523 A120524 * A120526 A120527 A120528


KEYWORD

nonn


AUTHOR

Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca), Jun 20 2006


STATUS

approved



