login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A120525 First differences of successive generalized meta-Fibonacci numbers A120503. 2
1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..75.

C. Deugau and F. Ruskey, Complete k-ary Trees and Generalized Meta-Fibonacci Sequences, J. Integer Seq., Vol. 12. [This is a later version than that in the GenMetaFib.html link]

C. Deugau and F. Ruskey, Complete k-ary Trees and Generalized Meta-Fibonacci Sequences

FORMULA

d(n) = 0 if node n is an inner node, or 1 if node n is a leaf.

g.f.: z (1 + z^1 ( (1 - z^(2 * [1])) / (1 - z^[1]) + z^3 * (1 - z^(3 * [i]))/(1 - z^[1]) ( (1 - z^(2 * [2])) / (1 - z^[2]) + z^9 * (1 - z^(3 * [2]))/(1 - z^[2]) (..., where [i] = (3^i - 1) / 2.

g.f.: D(z) = z * prod((1 - z^(3 * [i])) / (1 - z^[i])), i=1..infinity), where [i] = (3^i - 1) / 2.

MAPLE

d := n -> if n=1 then 1 else A120503(n)-A120503(n-1) fi;

CROSSREFS

Cf. A120503, A120514.

Sequence in context: A304653 A132350 A076213 * A285373 A112299 A230901

Adjacent sequences:  A120522 A120523 A120524 * A120526 A120527 A120528

KEYWORD

nonn

AUTHOR

Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca), Jun 20 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 03:18 EST 2020. Contains 331031 sequences. (Running on oeis4.)