

A120524


First differences of successive metaFibonacci numbers A120502.


2



1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..75.
C. Deugau and F. Ruskey, Complete kary Trees and Generalized MetaFibonacci Sequences, J. Integer Seq., Vol. 12. [This is a later version than that in the GenMetaFib.html link]
C. Deugau and F. Ruskey, Complete kary Trees and Generalized MetaFibonacci Sequences
B. Jackson and F. Ruskey, MetaFibonacci Sequences, Binary Trees and Extremal Compact Codes, Electronic Journal of Combinatorics, 13 (2006), #R26, 13 pages.


FORMULA

d(n) = 0 if node n is an inner node, or 1 if node n is a leaf.
G.f.: z (1 + z^4 ( (1  z^[1]) / (1  z^[1]) + z^5 * (1  z^(2 * [i]))/(1  z^[1]) ( (1  z^[2]) / (1  z^[2]) + z^7 * (1  z^(2 * [2]))/(1  z^[2]) (..., where [i] = (2^i  1).
G.f.: D(z) = z * (1  z^3) * sum(prod(z^3 * (1  z^(2 * [i])) / (1  z^[i]), i=1..n), n=0..infinity), where [i] = (2^i  1).


MAPLE

d := n > if n=1 then 1 else A120502(n)A120502(n1) fi;


CROSSREFS

Cf. A120502, A120513.
Sequence in context: A111900 A173860 A123192 * A014177 A014129 A121505
Adjacent sequences: A120521 A120522 A120523 * A120525 A120526 A120527


KEYWORD

nonn


AUTHOR

Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca), Jun 20 2006


STATUS

approved



