login
A120523
First differences of successive meta-Fibonacci numbers A120501.
2
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,1
LINKS
C. Deugau and F. Ruskey, Complete k-ary Trees and Generalized Meta-Fibonacci Sequences, J. Integer Seq., Vol. 12. [This is a later version than that in the GenMetaFib.html link]
B. Jackson and F. Ruskey, Meta-Fibonacci Sequences, Binary Trees and Extremal Compact Codes, Electronic Journal of Combinatorics, 13 (2006), #R26, 13 pages.
FORMULA
d(n) = 0 if node n is an inner node, or 1 if node n is a leaf.
G.f.: z (1 + z^3 ( (1 - z^[1]) / (1 - z^[1]) + z^4 * (1 - z^(2 * [i]))/(1 - z^[1]) ( (1 - z^[2]) / (1 - z^[2]) + z^6 * (1 - z^(2 * [2]))/(1 - z^[2]) (..., where [i] = (2^i - 1).
G.f.: D(z) = z * (1 - z^2) * sum(prod(z^2 * (1 - z^(2 * [i])) / (1 - z^[i]), i=1..n), n=0..infinity), where [i] = (2^i - 1).
MAPLE
d := n -> if n=1 then 1 else A120501(n)-A120501(n-1) fi;
CROSSREFS
Sequence in context: A355684 A355683 A373374 * A269625 A359828 A359781
KEYWORD
nonn
AUTHOR
Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca), Jun 20 2006
STATUS
approved