login
A120505
Generalized meta-Fibonacci sequence a(n) with parameters s=2 and k=3.
3
1, 1, 1, 2, 3, 3, 3, 3, 4, 5, 6, 6, 7, 8, 9, 9, 9, 9, 9, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 18, 18, 18, 19, 20, 21, 21, 22, 23, 24, 24, 25, 26, 27, 27, 27, 27, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36
OFFSET
1,4
LINKS
C. Deugau and F. Ruskey, Complete k-ary Trees and Generalized Meta-Fibonacci Sequences, J. Integer Seq., Vol. 12. [This is a later version than that in the GenMetaFib.html link]
FORMULA
If 1 <= n <= 3, a(n)=1. If 4 <= n <= 5, then a(n)=n-2. If n>5 then a(n)=a(n-2-a(n-1)) + a(n-3-a(n-2)) + a(n-4-a(n-3)).
G.f.: A(z) = z * (1 - z^2) / (1 - z) * sum(prod(z^2 * (1 - z^(3 * [i])) / (1 - z^[i]), i=1..n), n=0..infinity), where [i] = (3^i - 1) / 2.
MAPLE
a := proc(n)
option remember;
if n <= 3 then return 1 end if;
if n <= 5 then return n-2 end if;
return add(a(n - i - 1 - a(n - i)), i = 1 .. 3)
end proc
CROSSREFS
Sequence in context: A194272 A285764 A025776 * A029109 A257998 A029090
KEYWORD
nonn
AUTHOR
Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca), Jun 20 2006
STATUS
approved