login
A120482
Recurrence sequence derived from the digits of the square root of 3 after its decimal point.
3
0, 4, 22, 215, 2737, 8636, 20805, 38867, 1868, 6505, 5767, 1004, 1216, 11702, 55995, 43202, 314308, 2100749, 2420235, 7750204, 5141127, 2950527, 3113789, 42198, 119161, 96031, 77643, 10695, 105061, 37099, 176209, 3390478, 4549989, 9038843
OFFSET
0,2
FORMULA
a(0) = 0; for i >= 0, a(i+1) = position of first occurrence of a(i) in decimal places of sqrt(3).
EXAMPLE
sqrt(3) = 1.73205080756887729352744634151...
So for example, with a(0) = 0, a(1) = 4 because the 4th digit after the decimal point is 0; a(2) = 22 because the 22nd digit after the decimal point is 4 and so on.
MAPLE
with(StringTools): Digits:=10000: G:=convert(evalf(sqrt(3)), string): a[0]:=0: for n from 1 to 6 do a[n]:=Search(convert(a[n-1], string), G)-2:printf("%d, ", a[n-1]):od: # Nathaniel Johnston, Apr 30 2011
CROSSREFS
Other recurrence sequences: A097614 for Pi, A098266 for e, A098289 for log(2), A098290 for Zeta(3), A098319 for 1/Pi, A098320 for 1/e, A098321 for gamma, A098322 for G, A098323 for 1/G, A098324 for Golden Ratio (phi), A098325 for sqrt(Pi), A098326 for sqrt(2), A189893 for sqrt(5), A098327 for sqrt(e), A098328 for 2^(1/3).
Sequence in context: A063380 A113385 A356285 * A207156 A197999 A197963
KEYWORD
base,nonn
AUTHOR
Ryan Propper, Jul 21 2006
STATUS
approved