login
Binomial(n+6,5)-binomial(n,5).
0

%I #12 Jun 13 2015 00:52:06

%S 6,21,56,126,252,461,786,1266,1946,2877,4116,5726,7776,10341,13502,

%T 17346,21966,27461,33936,41502,50276,60381,71946,85106,100002,116781,

%U 135596,156606,179976,205877,234486,265986,300566,338421,379752,424766

%N Binomial(n+6,5)-binomial(n,5).

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5, -10, 10, -5, 1).

%F a(n)=A008488(n+1). [From _R. J. Mathar_, Aug 07 2008]

%F a(0)=6, a(1)=21, a(2)=56, a(3)=126, a(4)=252, a(n)=5a(n-1)-10a(n-2)+ 10a(n-3)-5a(n-4)+a(n-5) [From Harvey P. Dale, May 04 2011]

%F G.f.: (-6 + 9 x - 11 x^2 + 4 x^3 - 2 x^4)/(-1 + x)^5 [From Harvey P. Dale, May 04 2011]

%p [seq(binomial(n+6,5)-binomial(n,5),n=0..45)];

%t Table[Binomial[n+6,5]-Binomial[n,5],{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{6,21,56,126,252},40] (* _Harvey P. Dale_, May 04 2011 *)

%K easy,nonn

%O 0,1

%A _Zerinvary Lajos_, Jul 21 2006