login
A120461
Expansion of x*(4-x)/( (2x-1)*(x^2-x-1)).
1
0, 4, 3, 15, 16, 55, 73, 206, 315, 787, 1320, 3051, 5437, 11950, 22159, 47135, 89712, 186799, 361665, 742638, 1454035, 2958619, 5835448, 11803235, 23392341, 47131150, 93701703, 188310471, 375153280, 752681287, 1501520185, 3009257486
OFFSET
0,2
FORMULA
a(n) = (7*2^n -A039834(n)-7*A039834(n+1))/5. - R. J. Mathar, Nov 05 2011
MAPLE
A039834 := proc(n)
if n <= 1 then
n;
else
-procname(n-1)+procname(n-2) ;
end if;
end proc:
A120461 := proc(n)
(7*2^n -A039834(n)-7*A039834(n+1))/5 ;
end proc:
seq(A120461(n), n=0..10) ; # R. J. Mathar, Nov 05 2011
MATHEMATICA
M = {{0, 1, 0, 0, 1}, {1, 0, 1, 0, 0}, {0, 1, 0, 1, 0}, {0, 0, 1, 0, 1}, {1, 0, 0, 1, 0}} v[1] = {0, 1, 1, 2, 3} v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}]
CROSSREFS
Sequence in context: A358281 A095332 A195586 * A324013 A345013 A113204
KEYWORD
nonn,easy
AUTHOR
STATUS
approved