This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A120445 Number of different convex inscribed polygons with n pair of sides of lengths d1, d2, ..., dn all distinct. Or number of bracelets with n pairs of beads, each pair of one among n colors. 1
 1, 2, 11, 171, 5736, 312240, 24327000, 2554072920, 347351195520, 59397023589120, 12473374574505600, 3155763762320400000, 946729128624509260800, 332301924146113021900800, 134914581203304233287756800, 62735280259536165098353536000, 33124227977035089658775531520000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS G. C. Greubel, Table of n, a(n) for n = 1..235 Ignacio Larrosa Cañestro, Marko Riedel, n-digonos. Marko Riedel, Pairs of beads on a ring. FORMULA a(n) = ((2n)!/2^n + (2n+1)*n!)/(4n). a(n) ~ sqrt(Pi)*2^n*n^(2*n-1/2)/(2*exp(2*n)). - Ilya Gutkovskiy, Nov 21 2016 EXAMPLE a(2) = 2 because there are two quadrilaterals with sides {1, 1, 2, 2}: a kite and a rectangle. MATHEMATICA Table[((2 n)! / 2^n + (n + 1) n! + n n!) / (4 n), {n, 20}] (* Vincenzo Librandi, Nov 22 2016 *) PROG (MAGMA) [(Factorial(2*n)/2^n+(n+1)*Factorial(n)+n*Factorial(n))/(4*n): n in [1..20]]; // Vincenzo Librandi, Nov 22 2016 (PARI) for(n=1, 25, print1(((2*n)!/2^n + (2*n+1)*n!)/(4*n), ", ")) \\ G. C. Greubel, May 25 2017 CROSSREFS Sequence in context: A197336 A013050 A051255 * A003088 A121231 A122527 Adjacent sequences:  A120442 A120443 A120444 * A120446 A120447 A120448 KEYWORD nonn AUTHOR Ignacio Larrosa Cañestro, Jul 19 2006 EXTENSIONS Name clarified by Marko Riedel, Nov 22 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 10:32 EDT 2019. Contains 324219 sequences. (Running on oeis4.)