This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A120442 P-positions of John H. Conway's "Digit Deletions" game from "On Numbers and Games". Each number is the smallest positive integer that cannot be reduced to an earlier number in the sequence, by performing one of the following two operations: (1) changing one digit to a smaller digit (but not changing the leading digit to 0), or (2) deleting a 0 and all subsequent digits. 0
 1, 11, 20, 32, 43, 54, 65, 76, 87, 98, 111, 120, 132, 143, 154, 165, 176, 187, 198, 201, 210, 222, 233, 244, 255, 266, 277, 288, 299, 300, 312, 321, 334, 345, 353, 367, 378, 386, 402, 413, 424, 431, 440, 456, 468, 475, 489, 497, 503, 514 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The sequence is base-dependent, but notice that each number in a given base's sequence has a correspondent in all higher bases (the number with the same digit representation). The smallest n-digit number in the sequence is always a repunit. REFERENCES John H. Conway, On Numbers and Games, 2nd Edition, pp. 190-192. LINKS EXAMPLE 201 is in the sequence because every number it may be reduced to (101, 2, 200) is not in the sequence: 101 and 2 both reduce to 1 and 200 reduces to 20. CROSSREFS Sequence in context: A044435 A302563 A011753 * A059407 A109376 A100038 Adjacent sequences:  A120439 A120440 A120441 * A120443 A120444 A120445 KEYWORD base,easy,nonn AUTHOR Trevor Green (green(AT)math.usask.ca), Jul 18 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 05:36 EST 2019. Contains 329978 sequences. (Running on oeis4.)