

A120418


Triangle read by rows, where t(n,1) = 1, t(n,m) = t(n,m1) + (largest square in row {n1}).


1



1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 5, 9, 13, 17, 1, 10, 19, 28, 37, 46, 1, 2, 3, 4, 5, 6, 7, 1, 5, 9, 13, 17, 21, 25, 29, 1, 26, 51, 76, 101, 126, 151, 176, 201, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 1, 65, 129, 193, 257, 321, 385, 449, 513, 577, 641
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


LINKS

Table of n, a(n) for n=1..77.


EXAMPLE

25 is the largest square in row 8 of the triangle. So t(9,m) = 1 + 25*(m1), 1 <= m <= 9.


MAPLE

A120418 := proc(n) option remember ; local lsqr, i, a ; if n = 1 then RETURN([1]) ; else lsqr := 0 ; a := [1] ; for i in A120418(n1) do if issqr(i) then lsqr := max(lsqr, i ) ; fi ; od: for i from 2 to n do a := [op(a), op(i1, a)+lsqr] ; od: RETURN(a) ; fi ; end: for n from 1 to 18 do print(op(A120418(n))) ; od: # R. J. Mathar, Jan 21 2008


CROSSREFS

Sequence in context: A278961 A194973 A195113 * A120853 A175022 A243613
Adjacent sequences: A120415 A120416 A120417 * A120419 A120420 A120421


KEYWORD

nonn,tabl


AUTHOR

Leroy Quet, Jul 08 2006


EXTENSIONS

More terms from R. J. Mathar, Jan 21 2008


STATUS

approved



