%I #21 Feb 19 2022 10:23:24
%S 2,5,7,11,13,19,31,37,41,47,59,67,71,73,83,89,97,109,137,149,151,163,
%T 167,193,197,223,227,229,239,241,271,281,293,307,317,331,349,353,359,
%U 379,383,397,401,409,421,431,449,457,461,463,479,487,499,509,541,557
%N Primes not congruent to +- 1, 3, or 4 (mod 13).
%C This sequence consists of all the primes that are not in A270997. - _Bill McEachen_, Feb 16 2022
%F A000040 \ A038883 U {13}: Complement of A038883 in the primes, and 13. - _M. F. Hasler_, Feb 17 2022
%e 37 is prime and congruent to -2 (mod 13), so 37 is a term.
%t For[a = 1, a < 1001, a++, p = Prime[a]; t = Mod[p, 13]; If[Or[t == 1, t == 3, t == 4, t == 9, t == 10, t == 12] == False, Print[p]]]
%t Select[Prime[Range[110]],!MemberQ[{1,3,4,9,10,12},Mod[#,13]]&] (* _Harvey P. Dale_, May 12 2019 *)
%o (PARI) select( {is_A120330(n)=!bittest(5658,n%13)&&isprime(n)}, [0..567]) \\ _M. F. Hasler_, Feb 17 2022
%Y Cf. A038883 (primes congruent to 0, +-1, +-3, +-4 (mod 13)).
%Y Cf. A270997.
%K easy,nonn
%O 1,1
%A _Neil Fernandez_, Jun 22 2006
%E Corrected by _N. J. A. Sloane_, May 12 2019 at the suggestion of _Harvey P. Dale_