This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A120285 Numerator of harmonic number H(p-1) = Sum[ 1/k, {k,1,p-1}] for prime p. 1
 1, 3, 25, 49, 7381, 86021, 2436559, 14274301, 19093197, 315404588903, 9304682830147, 54801925434709, 2078178381193813, 12309312989335019, 5943339269060627227, 14063600165435720745359, 254381445831833111660789 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Prime[n]^2 divides a(n) for n>2. LINKS R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057, 2011 Eric Weisstein's World of Mathematics, Wolstenholme's Theorem. FORMULA a(n) = numerator[Sum[1/k,{k,1,Prime[n]-1}]]. a(n) = A001008[Prime[n]-1]. a(n) = A061002[n]*Prime[n]^2 for n>2. MAPLE f3:=proc(n) local p; p:=ithprime(n); numer(add(1/i, i=1..p-1)); end proc; [seq(f3(n), n=1..20)]; MATHEMATICA Numerator[Table[Sum[1/k, {k, 1, Prime[n]-1}], {n, 1, 20}]] CROSSREFS Cf. A001008, A061002, A185399. Sequence in context: A051280 A145609 A259923 * A041897 A242974 A006222 Adjacent sequences:  A120282 A120283 A120284 * A120286 A120287 A120288 KEYWORD frac,nonn AUTHOR Alexander Adamchuk, Jul 07 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 19 16:10 EST 2017. Contains 294936 sequences.