login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A120285 Numerator of harmonic number H(p-1) = Sum[ 1/k, {k,1,p-1}] for prime p. 1
1, 3, 25, 49, 7381, 86021, 2436559, 14274301, 19093197, 315404588903, 9304682830147, 54801925434709, 2078178381193813, 12309312989335019, 5943339269060627227, 14063600165435720745359, 254381445831833111660789 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Prime[n]^2 divides a(n) for n>2.

LINKS

Table of n, a(n) for n=1..17.

R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057, 2011

Eric Weisstein's World of Mathematics, Wolstenholme's Theorem.

FORMULA

a(n) = numerator[Sum[1/k,{k,1,Prime[n]-1}]]. a(n) = A001008[Prime[n]-1]. a(n) = A061002[n]*Prime[n]^2 for n>2.

MAPLE

f3:=proc(n) local p;

p:=ithprime(n);

numer(add(1/i, i=1..p-1));

end proc;

[seq(f3(n), n=1..20)];

MATHEMATICA

Numerator[Table[Sum[1/k, {k, 1, Prime[n]-1}], {n, 1, 20}]]

CROSSREFS

Cf. A001008, A061002, A185399.

Sequence in context: A051280 A145609 A259923 * A041897 A242974 A006222

Adjacent sequences:  A120282 A120283 A120284 * A120286 A120287 A120288

KEYWORD

frac,nonn

AUTHOR

Alexander Adamchuk, Jul 07 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 21 23:43 EDT 2017. Contains 290940 sequences.