login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A120261 Number of primitive triangles with integer sides a<=b<=c and inradius n; primitive means gcd(a, b, c) = 1. 2
1, 4, 10, 11, 13, 28, 17, 26, 31, 31, 20, 77, 28, 46, 67, 40, 28, 100, 26, 72, 120, 62, 32, 139, 44, 53, 71, 118, 32, 202, 35, 70, 135, 73, 97, 211, 33, 80, 130, 134, 36, 284, 45, 141, 183, 78, 50, 226, 68, 112, 150, 146, 38, 173, 150, 219, 182, 80, 38, 468, 36, 82 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
REFERENCES
Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.
LINKS
EXAMPLE
a(3)=10 because 10 triangles have coprime integer sides and inradius 3, namely (7,24,25) (7,65,68) (8,15,17) (11,13,20) (12,55,65) (13,40,51) (15,28,41) (16,25,39) (19,20,37) (11,100,109).
CROSSREFS
See A120062 for sequences related to integer-sided triangles with integer inradius n.
Sequence in context: A102535 A074226 A106631 * A310338 A101154 A182943
KEYWORD
nonn
AUTHOR
David W. Wilson, Jun 13 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 22:18 EDT 2024. Contains 371782 sequences. (Running on oeis4.)