login
Triangle of central coefficients of generalized Pascal-Narayana triangles.
5

%I #17 Apr 02 2021 08:38:29

%S 1,1,1,1,2,1,1,6,3,1,1,20,20,4,1,1,70,175,50,5,1,1,252,1764,980,105,6,

%T 1,1,924,19404,24696,4116,196,7,1,1,3432,226512,731808,232848,14112,

%U 336,8,1,1,12870,2760615,24293412,16818516,1646568,41580,540,9,1

%N Triangle of central coefficients of generalized Pascal-Narayana triangles.

%C Columns are the central coefficients of the triangles T(n, k;r) with T(n, k;r)=Product{j=0..r, C(n+j, k+j)/C(n-k+j, j)}*[k<=n]; (r=0,A007318), (r=1;A001263),(r=2,A056939),(r=3,A056940),(r=4,A056941). Essentially A103905 as a number triangle with an extra diagonal of 1's. Central coefficients T(2n, n) are A008793. Row sums are A120259. Diagonal sums are A120260.

%H Seiichi Manyama, <a href="/A120258/b120258.txt">Rows n = 0..100, flattened</a>

%F Number triangle T(n, k)=[k<=n]*Product{j=0..k-1, C(2n-2k+j, n-k)/C(n-k+j, j)}

%F As a square array, this is T(n,m)=product{k=1..m, product{j=1..n, product{i=1..n, (i+j+k-1)/(i+j+k-2)}}}; - _Paul Barry_, May 13 2008

%e Triangle begins:

%e 1;

%e 1, 1;

%e 1, 2, 1;

%e 1, 6, 3, 1;

%e 1, 20, 20, 4, 1;

%e 1, 70, 175, 50, 5, 1;

%e 1, 252, 1764, 980, 105, 6, 1;

%e 1, 924, 19404, 24696, 4116, 196, 7, 1;

%e ...

%o (PARI) T(n, k) = prod(j=0, k-1, binomial(2*n-2*k+j, n-k)/binomial(n-k+j, j)); \\ _Seiichi Manyama_, Apr 02 2021

%Y Row sums give A120259.

%Y Cf. A000891, A000984, A103905, A120257.

%K easy,nonn,tabl

%O 0,5

%A _Paul Barry_, Jun 13 2006