login
A120223
a(n) is the minimal number k>1 such that n+k and n*k+1 are primes.
6
2, 3, 2, 3, 2, 5, 4, 5, 2, 3, 2, 5, 4, 3, 2, 7, 6, 11, 10, 3, 2, 9, 6, 13, 4, 3, 4, 15, 2, 7, 10, 11, 10, 3, 2, 5, 4, 5, 2, 7, 2, 5, 4, 9, 14, 13, 6, 5, 4, 3, 2, 21, 14, 5, 6, 5, 4, 9, 12, 7, 6, 5, 10, 3, 2, 5, 4, 15, 2, 3, 8, 25, 6, 27, 8, 3, 6, 11, 4, 3, 2, 15, 6, 5, 12, 11, 20, 15, 12, 7, 6, 5, 4, 3
OFFSET
1,1
COMMENTS
If n+1 is prime then a(n)>A085063(n); if n+1 is not prime then a(n)=A085063(n).
LINKS
EXAMPLE
a(3)=2 because 3+2=5 and 3*2+1=7 are prime;
a(8)=5 because 8+5=13 and 8*5+1=41 are prime.
MAPLE
f:= proc(n) local k;
for k from `if`( n::odd, 2, 3) do
if isprime(n*k+1) and isprime(n+k) then return k fi
od
end proc:
map(f, [$1..100]); # Robert Israel, Feb 03 2019
MATHEMATICA
Reap[Do[Do[If[PrimeQ[{n+x, n*x+1}]=={True, True}, Sow[x]; Break[]], {x, 2, 100}], {n, 120}]][[2, 1]]
mnk[n_]:=Module[{k=2}, While[!AllTrue[{n+k, n*k+1}, PrimeQ], k++]; k]; Array[ mnk, 100] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 15 2014 *)
PROG
(PARI) for(n=1, 100, k=2; while(!isprime(n+k), k++; while(!isprime(n*k+1), k++)); print1(k, ", ")) \\ Jinyuan Wang, Feb 04 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Jun 10 2006
STATUS
approved