login
A120215
Start with 1057 and repeatedly reverse the digits and add 2 to get the next term.
5
1057, 7503, 3059, 9505, 5061, 1607, 7063, 3609, 9065, 5611, 1167, 7613, 3169, 9615, 5171, 1717, 7173, 3719, 9175, 5721, 1277, 7723, 3279, 9725, 5281, 1827, 7283, 3829, 9285, 5831, 1387, 7833, 3389, 9835, 5391, 1937, 7393, 3939, 9395, 5941, 1497, 7943, 3499, 9945, 5501
OFFSET
1,1
COMMENTS
Let T(S,Q) be the sequence obtained by starting with S and repeatedly reversing the digits and adding Q to get the next term. This is T(1057,2). 1057 is the first S for which T(S,2) reaches a cycle of length 45. The cycle is simply the first 45 terms, which then repeat. A full period is shown.
LINKS
N. J. A. Sloane and others, Sequences of RADD type, OEIS wiki.
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
FORMULA
a(n) = a(n-45). - Boštjan Gec, Sep 21 2023
MATHEMATICA
NestList[IntegerReverse[#]+2&, 1057, 50] (* Harvey P. Dale, Jan 25 2021 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Klaus Brockhaus, Jun 11 2006
STATUS
approved