OFFSET
0,1
COMMENTS
The subdiagonal of A120113 is -a(n).
From Robert Israel, Dec 03 2024: (Start)
a(n) is the product of the primes p such that 2*n + 3 or 2*n + 4 is a power of p.
Thus: a(n) = 1 if and only if neither 2*n + 3 nor 2*n + 4 is in A000961.
if n + 1 = 2^k - 1 is a Mersenne number but not a Mersenne prime, then a(n) = 2;
if n + 1 = 2^k - 1 is a Mersenne prime, then a(n) = 2 * (2^k - 1);
otherwise a(n) is odd. (End)
Conjectures from Davide Rotondo, Dec 02 2024: (Start)
Except for 2, if a(n) is even then a(n)/2 is a Mersenne prime.
LINKS
Muniru A Asiru, Table of n, a(n) for n = 0..5000
FORMULA
MAPLE
f:= proc(n) local t, x, S;
t:= 1;
for x from 2*n+3 to 2*n+4 do
S:= numtheory:-factorset(x);
if nops(S) = 1 then t:= t*S[1] fi;
od;
t
end proc:
map(f, [$0..100]); # Robert Israel, Dec 03 2024
MATHEMATICA
Table[(LCM@@Range[2n+4])/LCM@@Range[2n+2], {n, 0, 100}] (* Harvey P. Dale, Dec 15 2017 *)
PROG
(GAP) List([0..75], n->Lcm(List([1..2*n+4], i->i))/Lcm(List([1..2*n+2], i->i))); # Muniru A Asiru, Mar 04 2019
(Magma)
A120114:= func< n | Lcm([1..2*n+4])/Lcm([1..2*n+2]) >;
[A120114(n): n in [0..100]]; // G. C. Greubel, May 05 2023
(SageMath)
def A120114(n):
return lcm(range(1, 2*n+5)) // lcm(range(1, 2*n+3))
[A120114(n) for n in range(101)] # G. C. Greubel, May 05 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 09 2006
EXTENSIONS
More terms from Harvey P. Dale, Dec 15 2017
STATUS
approved