The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A120069 Denominators of partial sums of a convergent series involving scaled Catalan numbers A000108. 3
 1, 2, 16, 32, 128, 256, 4096, 8192, 32768, 65536, 524288, 1048576, 4194304, 8388608, 268435456, 536870912, 2147483648, 4294967296, 34359738368, 68719476736, 274877906944, 549755813888, 8796093022208 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For the corresponding numerator sequence see A119951. The series s:=sum(C(k)/2^(2*(k-1)),k=1..infty), with C(n):=A000108(n) (Catalan numbers) is convergent due to J. L. Raabe's criterion. The value for s is 4 (see A119951). The asymptotics for C(n)/2^(2*(k-1)) is 4/(sqrt(Pi)*k^(3/2)) (see mathworld). The sum over the asymptotic values from k=1..infinity is (4/sqrt(Pi))*Zeta(3/2) = 5.895499840 (maple10, 10 digits). The partial sums r(n):=sum(C(k)/2^(2*(k-1)),k=1..n) are rationals (written in lowest terms). For the rationals r(n) see the W. Lang link under A119951. Term a(n) appears to be the denominator of Catalan(n)/4^(n-1) but I have no proof of this. [Groux Roland, Dec 11 2010] LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 FORMULA a(n)=denominator(r(n)) with the rationals r(n) defined above. MATHEMATICA Denominator[Table[Sum[CatalanNumber[k]/2^(2*(k - 1)), {k, 1, n}], {n, 1, 50}]] (* G. C. Greubel, Feb 08 2017 *) PROG (PARI) for(n=1, 50, print1(denominator(sum(k=1, n, binomial(2*k, k)/((k+1)*2^(2*k-2)))), ", ")) \\ G. C. Greubel, Feb 08 2017 CROSSREFS Sequence in context: A056707 A069256 A279034 * A018975 A012696 A012392 Adjacent sequences:  A120066 A120067 A120068 * A120070 A120071 A120072 KEYWORD nonn,easy,frac AUTHOR Wolfdieter Lang, Jul 20 2006 EXTENSIONS First comment corrected by Harvey P. Dale, Oct 09 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 12 01:40 EDT 2020. Contains 335658 sequences. (Running on oeis4.)