%I #7 Jul 06 2012 11:52:26
%S 0,0,0,0,0,0,0,0,0,0,1,1,5,8,22,47,103,234,490,1078,2261,4844,10294,
%T 21659,45609,95580,200422,417715,871452,1811412,3761623,7798409,
%U 16142081,33373093,68906782,142120436,292797806,602653984,1239225631
%N Number of 11-almost primes 11ap such that 2^n < 11ap <= 2^(n+1).
%C The partial sum equals the number of Pi_11(2^n).
%e (2^11, 2^12] there is one semiprime, namely 3072. 2048 was counted in the previous entry.
%t AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* _Eric W. Weisstein_, Feb 07 2006 *)
%t t = Table[AlmostPrimePi[11, 2^n], {n, 0, 30}]; Rest@t - Most@t
%Y Cf. A069272, A036378, A120033, A120034, A120035, A120036, A120037, A120038, A120039, A120040, A120041, A120042, A120043.
%K nonn
%O 0,13
%A _Jonathan Vos Post_ and _Robert G. Wilson v_, Mar 21 2006