OFFSET
0,7
COMMENTS
The partial sum equals the number of Pi_5(2^n) = 0, 0, 0, 0, 1, 2, 7, 15, 36, 77, 168, 367, 770, 1643,..
EXAMPLE
(2^5, 2^6] there is one semiprime, namely 48. 32 was counted in the previous entry.
MATHEMATICA
FiveAlmostPrimePi[n_] := Sum[ PrimePi[n/(Prime@i*Prime@j*Prime@k*Prime@l)] - l + 1, {i, PrimePi[n^(1/5)]}, {j, i, PrimePi[(n/Prime@i)^(1/4)]}, {k, j, PrimePi[(n/(Prime@i*Prime@j))^(1/3)]}, {l, k, PrimePi[(n/(Prime@i*Prime@j*Prime@k))^(1/2)]}]; t = Table[ FiveAlmostPrimePi[2^n], {n, 0, 37}]; Rest@t - Most@t
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post and Robert G. Wilson v, Mar 20 2006
STATUS
approved