login
A119958
Numerator of determinant of n X n matrix with elements M[i,j] = (p^2 - p + 1)/(p*(p-1)) if i=j and 1 otherwise, where p=Prime[i].
2
3, 7, 147, 301, 33411, 1748509, 36718689, 4198170109, 709490748421, 82402282638039, 1345903949754637, 1564158644309443, 855594778437265321, 5136411178193150947, 3703352459477261832787, 261798531558431048025481
OFFSET
1,1
COMMENTS
All square prime divisors of a(n) {7,13,43,139,19,31,61,37,607,523,67,79,1201,241,1171,157,109,...} belong to A002476[n] Primes of form 6n + 1.
MATHEMATICA
Numerator[ Table[ Det[ DiagonalMatrix[ Table[1/(Prime[i]*(Prime[i]-1)), {i, 1, n} ] + 1 ]], {n, 1, 150}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Aug 02 2006
STATUS
approved