%I #6 Jul 10 2011 18:41:28
%S 0,4,31,1,3,127,1,2,1,31,4,
%T 369609730464587576881796108788303489874280580713009640661874741394877821854816844,
%U 1,1,2,2,61,4,8,1,1,1,1,4,3,1,2,1,9,2,5,1,3,3,10,2,1,1,1,1,1,8,5,1,12,3
%N Continued fraction expansion of the value of Minkowski's question mark function at 1/Pi.
%C Due to the unusually large early term, this value is very nearly (127*2^16 + 1)/2^25 = 8323073/33554432. Decimal expansion given by A119927.
%H <a href="/index/Me#MinkowskiQ">Index entries for Minkowski's question mark function</a>
%H <a href="/index/Me#MinkowskiQ">Index entries for sequences related to Minkowski's question mark function</a>
%t ContinuedFraction[(cf = ContinuedFraction[1/Pi,80(*arbitrary precision*)]; IntegerPart[1/Pi] + Sum[(-1)^(k)/2^(Sum[cf[[i]], {i, 2, k}] - 1), {k, 2, Length[cf]}])]
%Y Cf. A119927.
%K cofr,nonn
%O 0,2
%A Joseph Biberstine (jrbibers(AT)indiana.edu), May 29 2006