OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,20,0,-64).
FORMULA
G.f.: -(576*x^4-5050*x^3-2396*x^2-59*x-1) / ((2*x-1)*(2*x+1)*(4*x-1)*(4*x+1)). - Colin Barker, Nov 17 2012
a(n) = 2^(n-4)*(-3266 + 585*(-2)^n + 258*(-1)^n + 2583*2^n) for n>0. - Colin Barker, Feb 05 2017
MATHEMATICA
M = {{0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, {1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0}, {1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1}, {0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1}, {0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0}} v[1] = Table[Fibonacci[n], {n, 1, 16}] v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}]
(* Second program: *)
A = SparseArray[{{1, 8} -> 1, Band[{1, 4}] -> 1, Band[{1, 2}, {3, 4}] -> 1, Band[{5, 6}, {7, 8}] -> 1}, {8, 8}]; M = ArrayFlatten[{{A+Transpose[A], IdentityMatrix[8]}, {IdentityMatrix[8], A+Transpose[A]}}]; v[1] = Array[ Fibonacci, 16]; v[n_] := v[n] = M.v[n-1]; A119886 = Array[v, 50][[All, 1]] (* Jean-François Alcover, Feb 05 2017 *)
LinearRecurrence[{0, 20, 0, -64}, {1, 59, 2416, 6230, 47680}, 30] (* Harvey P. Dale, Sep 06 2024 *)
PROG
(PARI) Vec(-(576*x^4-5050*x^3-2396*x^2-59*x-1) / ((2*x-1)*(2*x+1)*(4*x-1)*(4*x+1)) + O(x^30)) \\ Colin Barker, Feb 05 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Aug 09 2006
EXTENSIONS
New name from Joerg Arndt, Feb 05 2017
STATUS
approved