This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A119881 Expansion of e.g.f. exp(3*x)*sech(x). 6
 1, 3, 8, 18, 32, 48, 128, 528, 512, -6912, 2048, 357888, 8192, -22351872, 32768, 1903822848, 131072, -209865080832, 524288, 29088886161408, 2097152, -4951498048929792, 8388608, 1015423886523629568, 33554432, -246921480190140874752, 134217728, 70251601603944228323328 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Transform of 3^n under the matrix A119879. Also the Swiss-Knife polynomials A153641 evaluated at x=3. - Peter Luschny, Nov 23 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA a(n) = sum{k=0..n, A119879(n,k)3^k}. a(n) = Sum(binomial(n,k)*B(k,1)*2^(n+k)/(n-k+1), k=0..n). Here B(k,1) are the Bernoulli number A027641(k)/A027642(k) with the exception B(1,1)=1/2. - Peter Luschny, Dec 14 2008 a(n) = 2^n |E(n,-1)| where E(n,x) are the Euler polynomials. - Peter Luschny, Jan 25 2009 The odd part of a(n) = numerator(Euler(n,2)/2) = 1, 3, 1, 9, 1, 3, 1, 33, 1, -27, 1, 699,... (compare A143074). - Peter Luschny, Nov 23 2012 G.f.: 1/Q(0), where Q(k)= 1 - 2*x - x*(k+1)/(1+x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013 G.f.: 1/Q(0), where Q(k)= 1 - 4*x + x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 20 2013 a(n) = 2^(n+1)*(zeta[-n]*(2^(n+1)-1)+1). - Peter Luschny, Jul 16 2013 E.g.f.: 2/Q(0), where Q(k) = 1 + 2^k/( 1 - 2*x/( 2*x  -  2^k*(k+1)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 16 2013 a(n) = 2^(n+1)*(1+(-1)^n*(2^(n+1)-1)*Bernoulli(n+1)/(n+1)). - Vladimir Reshetnikov, Oct 21 2015 MAPLE a := proc(n) add(binomial(n, k)*bernoulli(k, 1)*2^(n+k)/(n-k+1), k=0..n) end: # Peter Luschny, Dec 14 2008 a := n -> 2^n*abs(euler(n, -1)):  # Peter Luschny, Jan 25 2009 P := proc(n, x) option remember; if n = 0 then 1 else    (n*x+2*(1-x))*P(n-1, x)+x*(1-x)*diff(P(n-1, x), x);    expand(%) fi end: A119881 := n -> subs(x=-1, P(n, x)): seq(A119881(n), n=0..27);  # Peter Luschny, Mar 07 2014 MATHEMATICA Table[2^(n+1) (Zeta[-n] (2^(n+1)-1)+1), {n, 0, 27}] (* Peter Luschny, Jul 16 2013 *) Range[0, 30]! CoefficientList[Series[Exp[3 x] Sech[x], {x, 0, 30}], x] (* Vincenzo Librandi, Mar 08 2014 *) PROG (Sage) def skp(n, x):     A = lambda k: 0 if (k+1)%4 == 0 else (-1)^((k+1)//4)*2^(-(k//2))     return add(A(k)*add((-1)^v*binomial(k, v)*(v+x+1)^n for v in (0..k)) for k in (0..n)) A119881 = lambda n: skp(n, 3) [A119881(n) for n in (0..27)]  # Peter Luschny, Nov 23 2012 (PARI) x='x+O('x^66); Vec(serlaplace(exp(3*x)/cosh(x))) \\ Joerg Arndt, Apr 20 2013 CROSSREFS Cf. A119880. Sequence in context: A288249 A004210 A247022 * A184636 A075342 A083726 Adjacent sequences:  A119878 A119879 A119880 * A119882 A119883 A119884 KEYWORD easy,sign AUTHOR Paul Barry, May 26 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 16:42 EDT 2018. Contains 316286 sequences. (Running on oeis4.)