This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A119851 Triangle read by rows: T(n,k) is the number of ternary words of length n containing k 012's (n>=0, 0<=k<=floor(n/3)). 1
 1, 3, 9, 26, 1, 75, 6, 216, 27, 622, 106, 1, 1791, 387, 9, 5157, 1350, 54, 14849, 4566, 267, 1, 42756, 15102, 1179, 12, 123111, 49113, 4833, 90, 354484, 157622, 18798, 536, 1, 1020696, 500520, 70317, 2775, 15, 2938977, 1575558, 255231, 13068, 135 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row n has 1+floor(n/3) terms. Sum of entries in row n is 3^n (A000244). Sum(k*T(n,k),k>=0) = (n-2)*3^(n-3) = A027741(n-1). LINKS FORMULA T(n,k) = \sum_{j=0}^{n-3k}  binomial(-(k-1),j) * binomial(j,(n-3k-j)/2) * (-3)^((3j+3k-n)/2) [From Max Alekseyev] G.f. G(t,z)=1/(1-3z+z^3-tz^3). Recurrence relation: T(n,k) = 3*T(n-1,k)-T(n-3,k)+T(n-3,k-1) for n>=3. EXAMPLE T(4,1)=6 because we have 0012, 0120, 0121, 0122, 1012 and 2012. Triangle starts: 1; 3; 9; 26,1; 75,6; 216,27; 622,106,1; MAPLE G:=1/(1-3*z+z^3-t*z^3): Gser:=simplify(series(G, z=0, 20)): P[0]:=1: for n from 1 to 15 do P[n]:=sort(coeff(Gser, z^n)) od: for n from 0 to 15 do seq(coeff(P[n], t, j), j=0..floor(n/3)) od; # yields sequence in triangular form PROG (PARI) { T(n, k) = sum(j=0, n-3*k, if((n-3*k-j)%2, 0, binomial(-(k-1), j) * binomial(j, (n-3*k-j)/2) * (-3)^((3*j+3*k-n)/2) )) } \\ From Max Alekseyev CROSSREFS Cf. A000244, A076264 (=T(n,0)), A119852 (=T(n,1)), A027741. Sequence in context: A074440 A006204 A013572 * A119825 A235538 A218916 Adjacent sequences:  A119848 A119849 A119850 * A119852 A119853 A119854 KEYWORD nonn,tabf AUTHOR Emeric Deutsch, May 26 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.