|
|
A119836
|
|
Bi-diagonal inverse of [k<=n]*n!/(2k)!.
|
|
1
|
|
|
1, -2, 2, 0, -24, 12, 0, 0, -360, 120, 0, 0, 0, -6720, 1680, 0, 0, 0, 0, -151200, 30240, 0, 0, 0, 0, 0, -3991680, 665280, 0, 0, 0, 0, 0, 0, -121080960, 17297280, 0, 0, 0, 0, 0, 0, 0, -4151347200, 518918400, 0, 0, 0, 0, 0, 0, 0, 0, -158789030400, 17643225600, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6704425728000, 670442572800
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Row sums are A119837. T(n,n)=A001813(n). T(n,n-1)=2*A001814(n)
|
|
LINKS
|
Table of n, a(n) for n=0..65.
|
|
FORMULA
|
Triangle T(n,n)=(2n)!/n!,T(n,n-1)=(2n)!/(n-1)!,T(n,k)=0 otherwise.
|
|
EXAMPLE
|
Triangle begins
1,
-2, 2,
0, -24, 12,
0, 0, -360, 120,
0, 0, 0, -6720, 1680,
0, 0, 0, 0, -151200, 30240,
0, 0, 0, 0, 0, -3991680, 665280,
0, 0, 0, 0, 0, 0, -121080960, 17297280,
0, 0, 0, 0, 0, 0, 0, -4151347200, 518918400,
0, 0, 0, 0, 0, 0, 0, 0, -158789030400, 17643225600,
0, 0, 0, 0, 0, 0, 0, 0, 0, -6704425728000, 670442572800
|
|
CROSSREFS
|
Sequence in context: A069521 A245687 A228617 * A158112 A219496 A163534
Adjacent sequences: A119833 A119834 A119835 * A119837 A119838 A119839
|
|
KEYWORD
|
easy,sign,tabl
|
|
AUTHOR
|
Paul Barry, May 25 2006
|
|
STATUS
|
approved
|
|
|
|