login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A119825 Triangle read by rows: T(n,k) is the number of ternary sequences of length n containing k subsequences 000 (consecutively; n,k>=0). 3
1, 3, 9, 26, 1, 76, 4, 1, 222, 16, 4, 1, 648, 60, 16, 4, 1, 1892, 212, 62, 16, 4, 1, 5524, 728, 224, 64, 16, 4, 1, 16128, 2444, 788, 236, 66, 16, 4, 1, 47088, 8064, 2712, 848, 248, 68, 16, 4, 1, 137480, 26256, 9168, 2984, 908, 260, 70, 16, 4, 1, 401392, 84576, 30576 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Rows 0 and 1 have one term each; row n (n>=2) have n-1 terms. Sum of entries in row n is 3^n (A000244). T(n,0) = A119826(n) T(n,1) = A119827(n) Sum(k*T(n,k), k>=0)=(n-2)*3^(n-3) = A027741(n-1).

LINKS

Alois P. Heinz, Rows n = 0..150, flattened

FORMULA

G.f.: G(t,z)=[1+(1-t)z+(1-t)z^2]/[1-(2+t)z-2(1-t)z^2-2(1-t)z^3].

EXAMPLE

T(5,2) = 4 because we have 00001, 00002, 10000 and 20000.

Triangle starts:

1;

3;

9;

26,   1;

76,   4, 1;

222, 16, 4, 1;

MAPLE

G:=(1+(1-t)*z+(1-t)*z^2)/(1-(2+t)*z-2*(1-t)*z^2-2*(1-t)*z^3): Gser:=simplify(series(G, z=0, 15)): P[0]:=1: for n from 1 to 12 do P[n]:=sort(coeff(Gser, z^n)) od: 1; 3; for n from 2 to 12 do seq(coeff(P[n], t, j), j=0..n-2) od; # yields sequence in triangular form

MATHEMATICA

nn=10; f[list_]:=Select[list, #>0&]; a=x^2/(1-y x) +x; Map[f, CoefficientList[Series[(a+1)/(1-2x-2x a), {x, 0, nn}], {x, y}]]//Grid (* Geoffrey Critzer, Oct 31 2012 *)

CROSSREFS

Cf. A000244, A119826, A119827, A027741.

Sequence in context: A006204 A013572 A119851 * A235538 A218916 A037260

Adjacent sequences:  A119822 A119823 A119824 * A119826 A119827 A119828

KEYWORD

nonn,tabf

AUTHOR

Emeric Deutsch, May 26 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 06:40 EST 2018. Contains 299358 sequences. (Running on oeis4.)